These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 26935976)
1. Influence of copper on expression of nirS, norB and nosZ and the transcription and activity of NIR, NOR and N2 OR in the denitrifying soil bacteria Pseudomonas stutzeri. Black A; Hsu PC; Hamonts KE; Clough TJ; Condron LM Microb Biotechnol; 2016 May; 9(3):381-8. PubMed ID: 26935976 [TBL] [Abstract][Full Text] [Related]
2. Potential of aerobic denitrification by Pseudomonas stutzeri TR2 to reduce nitrous oxide emissions from wastewater treatment plants. Miyahara M; Kim SW; Fushinobu S; Takaki K; Yamada T; Watanabe A; Miyauchi K; Endo G; Wakagi T; Shoun H Appl Environ Microbiol; 2010 Jul; 76(14):4619-25. PubMed ID: 20495048 [TBL] [Abstract][Full Text] [Related]
3. The impact of copper, nitrate and carbon status on the emission of nitrous oxide by two species of bacteria with biochemically distinct denitrification pathways. Felgate H; Giannopoulos G; Sullivan MJ; Gates AJ; Clarke TA; Baggs E; Rowley G; Richardson DJ Environ Microbiol; 2012 Jul; 14(7):1788-800. PubMed ID: 22642644 [TBL] [Abstract][Full Text] [Related]
4. Nitric oxide signaling and transcriptional control of denitrification genes in Pseudomonas stutzeri. Vollack KU; Zumft WG J Bacteriol; 2001 Apr; 183(8):2516-26. PubMed ID: 11274111 [TBL] [Abstract][Full Text] [Related]
5. Minimizing nitrous oxide in biological nutrient removal from municipal wastewater by controlling copper ion concentrations. Zhu X; Chen Y; Chen H; Li X; Peng Y; Wang S Appl Microbiol Biotechnol; 2013 Feb; 97(3):1325-34. PubMed ID: 22419216 [TBL] [Abstract][Full Text] [Related]
6. Effect of Copper on Expression of Functional Genes and Proteins Associated with Pacheco PJ; Cabrera JJ; Jiménez-Leiva A; Bedmar EJ; Mesa S; Tortosa G; Delgado MJ Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328804 [TBL] [Abstract][Full Text] [Related]
7. Variable Inhibition of Nitrous Oxide Reduction in Denitrifying Bacteria by Different Forms of Methanobactin. Chang J; Peng P; DiSpirito AA; Semrau JD Appl Environ Microbiol; 2022 Apr; 88(7):e0234621. PubMed ID: 35285718 [TBL] [Abstract][Full Text] [Related]
8. Expression of the nos operon proteins from Pseudomonas stutzeri in transgenic plants to assemble nitrous oxide reductase. Wan S; Mottiar Y; Johnson AM; Goto K; Altosaar I Transgenic Res; 2012 Jun; 21(3):593-603. PubMed ID: 21938458 [TBL] [Abstract][Full Text] [Related]
10. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. Graf DR; Jones CM; Hallin S PLoS One; 2014; 9(12):e114118. PubMed ID: 25436772 [TBL] [Abstract][Full Text] [Related]
11. N2O binding at a [4Cu:2S] copper-sulphur cluster in nitrous oxide reductase. Pomowski A; Zumft WG; Kroneck PM; Einsle O Nature; 2011 Aug; 477(7363):234-7. PubMed ID: 21841804 [TBL] [Abstract][Full Text] [Related]
12. Nitrogen Removal Characteristics of a Marine Denitrifying Pseudomonas stutzeri BBW831 and a Simplified Strategy for Improving the Denitrification Performance Under Stressful Conditions. Fang J; Yan L; Tan M; Li G; Liang Y; Li K Mar Biotechnol (NY); 2023 Feb; 25(1):109-122. PubMed ID: 36446961 [TBL] [Abstract][Full Text] [Related]
13. Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk Wheat Experiment. Clark IM; Buchkina N; Jhurreea D; Goulding KW; Hirsch PR Philos Trans R Soc Lond B Biol Sci; 2012 May; 367(1593):1235-44. PubMed ID: 22451109 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the membranous denitrification enzymes nitrite reductase (cytochrome cd1) and copper-containing nitrous oxide reductase from Thiobacillus denitrificans. Hole UH; Vollack KU; Zumft WG; Eisenmann E; Siddiqui RA; Friedrich B; Kroneck PM Arch Microbiol; 1996 Jan; 165(1):55-61. PubMed ID: 8639023 [TBL] [Abstract][Full Text] [Related]
15. Modeling the effect of copper availability on bacterial denitrification. Woolfenden HC; Gates AJ; Bocking C; Blyth MG; Richardson DJ; Moulton V Microbiologyopen; 2013 Oct; 2(5):756-65. PubMed ID: 23913488 [TBL] [Abstract][Full Text] [Related]
17. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrous [corrected] oxide reductase in Paracoccus denitrificans. Bergaust L; Mao Y; Bakken LR; Frostegård A Appl Environ Microbiol; 2010 Oct; 76(19):6387-96. PubMed ID: 20709842 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional and metabolic regulation of denitrification in Paracoccus denitrificans allows low but significant activity of nitrous oxide reductase under oxic conditions. Qu Z; Bakken LR; Molstad L; Frostegård Å; Bergaust LL Environ Microbiol; 2016 Sep; 18(9):2951-63. PubMed ID: 26568281 [TBL] [Abstract][Full Text] [Related]
19. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils. Barrett M; Khalil MI; Jahangir MM; Lee C; Cardenas LM; Collins G; Richards KG; O'Flaherty V Environ Sci Pollut Res Int; 2016 Apr; 23(8):7899-910. PubMed ID: 26762934 [TBL] [Abstract][Full Text] [Related]
20. Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Shan J; Sanford RA; Chee-Sanford J; Ooi SK; Löffler FE; Konstantinidis KT; Yang WH Glob Chang Biol; 2021 Jun; 27(12):2669-2683. PubMed ID: 33547715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]