These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26936244)

  • 1. Ocean acidification affects competition for space: projections of community structure using cellular automata.
    McCoy SJ; Allesina S; Pfister CA
    Proc Biol Sci; 2016 Mar; 283(1826):20152561. PubMed ID: 26936244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Historical comparisons reveal altered competitive interactions in a guild of crustose coralline algae.
    McCoy SJ; Pfister CA
    Ecol Lett; 2014 Apr; 17(4):475-83. PubMed ID: 24422586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology of the crustose coralline alga Pseudolithophyllum muricatum (Corallinales, Rhodophyta) responds to 30 years of ocean acidification in the Northeast Pacific.
    McCoy SJ
    J Phycol; 2013 Oct; 49(5):830-7. PubMed ID: 27007309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ocean acidification on population dynamics and community structure of crustose coralline algae.
    Ordoñez A; Doropoulos C; Diaz-Pulido G
    Biol Bull; 2014 Jun; 226(3):255-68. PubMed ID: 25070869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification.
    Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P
    Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negative effects of ocean acidification on two crustose coralline species using genetically homogeneous samples.
    Kato A; Hikami M; Kumagai NH; Suzuki A; Nojiri Y; Sakai K
    Mar Environ Res; 2014 Mar; 94():1-6. PubMed ID: 24239067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generality in multispecies responses to ocean acidification revealed through multiple hypothesis testing.
    Barner AK; Chan F; Hettinger A; Hacker SD; Marshall K; Menge BA
    Glob Chang Biol; 2018 Oct; 24(10):4464-4477. PubMed ID: 30047188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High diversity of coralline algae in New Zealand revealed: Knowledge gaps and implications for future research.
    Twist BA; Neill KF; Bilewitch J; Jeong SY; Sutherland JE; Nelson WA
    PLoS One; 2019; 14(12):e0225645. PubMed ID: 31790447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification.
    Cavalcanti GS; Shukla P; Morris M; Ribeiro B; Foley M; Doane MP; Thompson CC; Edwards MS; Dinsdale EA; Thompson FL
    BMC Genomics; 2018 Sep; 19(1):701. PubMed ID: 30249182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coralline algal skeletal mineralogy affects grazer impacts.
    McCoy SJ; Kamenos NA
    Glob Chang Biol; 2018 Oct; 24(10):4775-4783. PubMed ID: 30030870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Major loss of coralline algal diversity in response to ocean acidification.
    Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM
    Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ changes of tropical crustose coralline algae along carbon dioxide gradients.
    Fabricius KE; Kluibenschedl A; Harrington L; Noonan S; De'ath G
    Sci Rep; 2015 Apr; 5():9537. PubMed ID: 25835382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eukaryotic Life Inhabits Rhodolith-forming Coralline Algae (Hapalidiales, Rhodophyta), Remarkable Marine Benthic Microhabitats.
    Krayesky-Self S; Schmidt WE; Phung D; Henry C; Sauvage T; Camacho O; Felgenhauer BE; Fredericq S
    Sci Rep; 2017 Apr; 7():45850. PubMed ID: 28368049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroalgal spore dysfunction: ocean acidification delays and weakens adhesion.
    Guenther R; Miklasz K; Carrington E; Martone PT
    J Phycol; 2018 Apr; 54(2):153-158. PubMed ID: 29288535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1).
    Diaz-Pulido G; Anthony KR; Kline DI; Dove S; Hoegh-Guldberg O
    J Phycol; 2012 Feb; 48(1):32-9. PubMed ID: 27009647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming.
    Bergstrom E; Ordoñez A; Ho M; Hurd C; Fry B; Diaz-Pulido G
    Mar Environ Res; 2020 Oct; 161():105107. PubMed ID: 32890983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa.
    Cornwall CE; Boyd PW; McGraw CM; Hepburn CD; Pilditch CA; Morris JN; Smith AM; Hurd CL
    PLoS One; 2014; 9(5):e97235. PubMed ID: 24824089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocean acidification and its potential effects on marine ecosystems.
    Guinotte JM; Fabry VJ
    Ann N Y Acad Sci; 2008; 1134():320-42. PubMed ID: 18566099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions.
    Nagelkerken I; Connell SD
    Proc Natl Acad Sci U S A; 2015 Oct; 112(43):13272-7. PubMed ID: 26460052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen enrichment offsets direct negative effects of ocean acidification on a reef-building crustose coralline alga.
    Johnson MD; Carpenter RC
    Biol Lett; 2018 Jul; 14(7):. PubMed ID: 29997188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.