BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 26936288)

  • 1. The reduction of temporal optic nerve head microcirculation in autosomal dominant optic atrophy.
    Inoue M; Himori N; Kunikata H; Takeshita T; Aizawa N; Shiga Y; Omodaka K; Nishiguchi KM; Takahashi H; Nakazawa T
    Acta Ophthalmol; 2016 Nov; 94(7):e580-e585. PubMed ID: 26936288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between structure/function and optic disc microcirculation in myopic glaucoma, measured with laser speckle flowgraphy.
    Aizawa N; Kunikata H; Shiga Y; Yokoyama Y; Omodaka K; Nakazawa T
    BMC Ophthalmol; 2014 Sep; 14():113. PubMed ID: 25252729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-Course Changes in Optic Nerve Head Blood Flow and Retinal Nerve Fiber Layer Thickness in Eyes with Open-angle Glaucoma.
    Kiyota N; Shiga Y; Omodaka K; Pak K; Nakazawa T
    Ophthalmology; 2021 May; 128(5):663-671. PubMed ID: 33065167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of inner retinal thickness in patients with autosomal dominant optic atrophy associated with OPA1 mutations.
    Ito Y; Nakamura M; Yamakoshi T; Lin J; Yatsuya H; Terasaki H
    Invest Ophthalmol Vis Sci; 2007 Sep; 48(9):4079-86. PubMed ID: 17724190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical coherence tomography shows early loss of the inferior temporal quadrant retinal nerve fiber layer in autosomal dominant optic atrophy.
    Park SW; Hwang JM
    Graefes Arch Clin Exp Ophthalmol; 2015 Jan; 253(1):135-41. PubMed ID: 25408424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between visual acuity and OCT-measured retinal nerve fiber layer thickness in a family with ADOA and an OPA1 mutation.
    Russo A; Delcassi L; Marchina E; Semeraro F
    Ophthalmic Genet; 2013; 34(1-2):69-74. PubMed ID: 22779427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging of the macula indicates early completion of structural deficit in autosomal-dominant optic atrophy.
    Rönnbäck C; Milea D; Larsen M
    Ophthalmology; 2013 Dec; 120(12):2672-2677. PubMed ID: 24120325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genotype-phenotype heterogeneity of ganglion cell and inner plexiform layer deficit in autosomal-dominant optic atrophy.
    Rönnbäck C; Nissen C; Almind GJ; Grønskov K; Milea D; Larsen M
    Acta Ophthalmol; 2015 Dec; 93(8):762-6. PubMed ID: 26385429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thickness mapping of individual retinal layers and sectors by Spectralis SD-OCT in Autosomal Dominant Optic Atrophy.
    Corajevic N; Larsen M; Rönnbäck C
    Acta Ophthalmol; 2018 May; 96(3):251-256. PubMed ID: 29091347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of oscillatory potentials and photopic negative response in patients with autosomal dominant optic atrophy with OPA1 mutations.
    Miyata K; Nakamura M; Kondo M; Lin J; Ueno S; Miyake Y; Terasaki H
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):820-4. PubMed ID: 17251483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal nerve fiber layer thickness in dominant optic atrophy measurements by optical coherence tomography and correlation with age.
    Barboni P; Savini G; Parisi V; Carbonelli M; La Morgia C; Maresca A; Sadun F; De Negri AM; Carta A; Sadun AA; Carelli V
    Ophthalmology; 2011 Oct; 118(10):2076-80. PubMed ID: 21621262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser speckle and hydrogen gas clearance measurements of optic nerve circulation in albino and pigmented rabbits with or without optic disc atrophy.
    Aizawa N; Nitta F; Kunikata H; Sugiyama T; Ikeda T; Araie M; Nakazawa T
    Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):7991-6. PubMed ID: 25377226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Relationship Between Interocular Asymmetry of Visual Field Defects and Optic Nerve Head Blood Flow in Patients With Glaucoma.
    Yamada Y; Higashide T; Udagawa S; Takeshima S; Sakaguchi K; Nitta K; Sugiyama K
    J Glaucoma; 2019 Mar; 28(3):231-237. PubMed ID: 30624388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological evidence for impairment in autosomal dominant optic atrophy at the pre-ganglion level.
    Reis A; Mateus C; Viegas T; Florijn R; Bergen A; Silva E; Castelo-Branco M
    Graefes Arch Clin Exp Ophthalmol; 2013 Jan; 251(1):221-34. PubMed ID: 22865259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ocular microcirculation measurement with laser speckle flowgraphy and optical coherence tomography angiography in glaucoma.
    Kiyota N; Kunikata H; Shiga Y; Omodaka K; Nakazawa T
    Acta Ophthalmol; 2018 Jun; 96(4):e485-e492. PubMed ID: 29575676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural Characterization of Glaucoma Patients with Low Ocular Blood Flow.
    Omodaka K; Fujioka S; An G; Udagawa T; Tsuda S; Shiga Y; Morishita S; Kikawa T; Pak K; Akiba M; Yokota H; Nakazawa T
    Curr Eye Res; 2020 Oct; 45(10):1302-1308. PubMed ID: 32134693
    [No Abstract]   [Full Text] [Related]  

  • 17. Progression in Open-Angle Glaucoma with Myopic Disc and Blood Flow in the Optic Nerve Head and Peripapillary Chorioretinal Atrophy Zone.
    Kiyota N; Shiga Y; Takahashi N; Yasuda M; Omodaka K; Tsuda S; Kunikata H; Nakazawa T
    Ophthalmol Glaucoma; 2020; 3(3):202-209. PubMed ID: 32672617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optic Nerve Head Blood Flow, as Measured by Laser Speckle Flowgraphy, Is Significantly Reduced in Preperimetric Glaucoma.
    Shiga Y; Kunikata H; Aizawa N; Kiyota N; Maiya Y; Yokoyama Y; Omodaka K; Takahashi H; Yasui T; Kato K; Iwase A; Nakazawa T
    Curr Eye Res; 2016 Nov; 41(11):1447-1453. PubMed ID: 27159148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peripapillary and macular morpho-vascular changes in patients with genetic or clinical diagnosis of autosomal dominant optic atrophy: a case-control study.
    Martins A; Rodrigues TM; Soares M; Dolan MJ; Murta JN; Silva R; Marques JP
    Graefes Arch Clin Exp Ophthalmol; 2019 May; 257(5):1019-1027. PubMed ID: 30798343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between laser speckle flowgraphy and optical coherence tomography angiography measurements of ocular microcirculation.
    Kiyota N; Kunikata H; Shiga Y; Omodaka K; Nakazawa T
    Graefes Arch Clin Exp Ophthalmol; 2017 Aug; 255(8):1633-1642. PubMed ID: 28462456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.