These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

538 related articles for article (PubMed ID: 26936334)

  • 21. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental realization of a one-atom laser in the regime of strong coupling.
    McKeever J; Boca A; Boozer AD; Buck JR; Kimble HJ
    Nature; 2003 Sep; 425(6955):268-71. PubMed ID: 13679909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tailoring Photon Statistics with an Atom-Based Two-Photon Interferometer.
    Cordier M; Schemmer M; Schneeweiss P; Volz J; Rauschenbeutel A
    Phys Rev Lett; 2023 Nov; 131(18):183601. PubMed ID: 37977631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polariton-assisted splitting of broadband emission spectra of strongly coupled organic dye excitons in tunable optical microcavity.
    Dovzhenko D; Mochalov K; Vaskan I; Kryukova I; Rakovich Y; Nabiev I
    Opt Express; 2019 Feb; 27(4):4077-4089. PubMed ID: 30876029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics.
    Mandal A; Taylor MAD; Weight BM; Koessler ER; Li X; Huo P
    Chem Rev; 2023 Aug; 123(16):9786-9879. PubMed ID: 37552606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reconfigurable Photon Sources Based on Quantum Plexcitonic Systems.
    You JB; Xiong X; Bai P; Zhou ZK; Ma RM; Yang WL; Lu YK; Xiao YF; Png CE; Garcia-Vidal FJ; Qiu CW; Wu L
    Nano Lett; 2020 Jun; 20(6):4645-4652. PubMed ID: 32364394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental Verification of the Very Strong Coupling Regime in a GaAs Quantum Well Microcavity.
    Brodbeck S; De Liberato S; Amthor M; Klaas M; Kamp M; Worschech L; Schneider C; Höfling S
    Phys Rev Lett; 2017 Jul; 119(2):027401. PubMed ID: 28753330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-efficiency all-optical switching based on broadband coherent perfect absorption in an atom-cavity system.
    Wang L; Zhao Y; Di K; Du J
    Opt Express; 2024 Jun; 32(12):20695-20705. PubMed ID: 38859445
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electromagnetically induced transparency with single atoms in a cavity.
    Mücke M; Figueroa E; Bochmann J; Hahn C; Murr K; Ritter S; Villas-Boas CJ; Rempe G
    Nature; 2010 Jun; 465(7299):755-8. PubMed ID: 20463661
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-Photon Blockade in an Atom-Driven Cavity QED System.
    Hamsen C; Tolazzi KN; Wilk T; Rempe G
    Phys Rev Lett; 2017 Mar; 118(13):133604. PubMed ID: 28409981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient routing of single photons by one atom and a microtoroidal cavity.
    Aoki T; Parkins AS; Alton DJ; Regal CA; Dayan B; Ostby E; Vahala KJ; Kimble HJ
    Phys Rev Lett; 2009 Feb; 102(8):083601. PubMed ID: 19257737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.
    Fink JM; Göppl M; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Nature; 2008 Jul; 454(7202):315-8. PubMed ID: 18633413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An electrically pumped polariton laser.
    Schneider C; Rahimi-Iman A; Kim NY; Fischer J; Savenko IG; Amthor M; Lermer M; Wolf A; Worschech L; Kulakovskii VD; Shelykh IA; Kamp M; Reitzenstein S; Forchel A; Yamamoto Y; Höfling S
    Nature; 2013 May; 497(7449):348-52. PubMed ID: 23676752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multidimensional photon correlation spectroscopy of cavity polaritons.
    Dorfman KE; Mukamel S
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):1451-1456. PubMed ID: 29386388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system.
    Kasprzak J; Reitzenstein S; Muljarov EA; Kistner C; Schneider C; Strauss M; Höfling S; Forchel A; Langbein W
    Nat Mater; 2010 Apr; 9(4):304-8. PubMed ID: 20208523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons.
    Dunkelberger AD; Spann BT; Fears KP; Simpkins BS; Owrutsky JC
    Nat Commun; 2016 Nov; 7():13504. PubMed ID: 27874010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deterministic reshaping of single-photon spectra using cross-phase modulation.
    Matsuda N
    Sci Adv; 2016 Mar; 2(3):e1501223. PubMed ID: 27051862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antibunching of thermal radiation by a room-temperature phonon bath: a numerically solvable model for a strongly interacting light-matter-reservoir system.
    Carmele A; Richter M; Chow WW; Knorr A
    Phys Rev Lett; 2010 Apr; 104(15):156801. PubMed ID: 20482004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for a Polariton-Mediated Biexciton Transition in Single-Walled Carbon Nanotubes.
    Lüttgens JM; Kuang Z; Zorn NF; Buckup T; Zaumseil J
    ACS Photonics; 2022 May; 9(5):1567-1576. PubMed ID: 35607642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.