BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26936420)

  • 1. Directly Predicting Water Quality Criteria from Physicochemical Properties of Transition Metals.
    Wang Y; Wu F; Mu Y; Zeng EY; Meng W; Zhao X; Giesy JP; Feng C; Wang P; Liao H; Chen C
    Sci Rep; 2016 Mar; 6():22515. PubMed ID: 26936420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting and comparing chronic water quality criteria from physicochemical properties of transition metals.
    Wang Y; Xu Z; Rume T; Li X; Fan W
    Chemosphere; 2020 Apr; 244():125465. PubMed ID: 32050324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids.
    Wu F; Mu Y; Chang H; Zhao X; Giesy JP; Wu KB
    Environ Sci Technol; 2013 Jan; 47(1):446-53. PubMed ID: 23199259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect doses for protection of human health predicted from physicochemical properties of metals/metalloids.
    Wang Y; Wu F; Liu Y; Mu Y; Giesy JP; Meng W; Hu Q; Liu J; Dang Z
    Environ Pollut; 2018 Jan; 232():458-466. PubMed ID: 28987569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of marine water quality criteria for metals based on a novel QICAR-SSD model.
    Chen C; Mu Y; Wu F; Zhang R; Su H; Giesy JP
    Environ Sci Pollut Res Int; 2015 Mar; 22(6):4297-304. PubMed ID: 25292300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Setting water quality criteria in China: approaches for developing species sensitivity distributions for metals and metalloids.
    Liu Y; Wu F; Mu Y; Feng C; Fang Y; Chen L; Giesy JP
    Rev Environ Contam Toxicol; 2014; 230():35-57. PubMed ID: 24609517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the hydrophobic effect. 3. A computer simulation-molecular-thermodynamic model for the micellization of ionic and zwitterionic surfactants in aqueous solution.
    Stephenson BC; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1063-75. PubMed ID: 17266259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic liquids: predictions of physicochemical properties with experimental and/or DFT-calculated LFER parameters to understand molecular interactions in solution.
    Cho CW; Preiss U; Jungnickel C; Stolte S; Arning J; Ranke J; Klamt A; Krossing I; Thöming J
    J Phys Chem B; 2011 May; 115(19):6040-50. PubMed ID: 21504151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for deriving pesticide aquatic life criteria.
    TenBrook PL; Tjeerdema RS; Hann P; Karkoski J
    Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute toxicity of metals and reference toxicants to a freshwater ostracod, Cypris subglobosa Sowerby, 1840 and correlation to EC(50) values of other test models.
    Khangarot BS; Das S
    J Hazard Mater; 2009 Dec; 172(2-3):641-9. PubMed ID: 19683870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling exchange kinetics of copper at the water-aquatic moss (Fontinalis antipyretica) interface: influence of water cationic composition (Ca, Mg, Na and pH).
    Ferreira D; Ciffroy P; Tusseau-Vuillemin MH; Garnier C; Garnier JM
    Chemosphere; 2009 Feb; 74(8):1117-24. PubMed ID: 19042004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecotoxicologically based marine acute water quality criteria for metals intended for protection of coastal areas.
    Durán I; Beiras R
    Sci Total Environ; 2013 Oct; 463-464():446-53. PubMed ID: 23831790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Science, policy, and trends of metals risk assessment at EPA: how understanding metals bioavailability has changed metals risk assessment at US EPA.
    Reiley MC
    Aquat Toxicol; 2007 Aug; 84(2):292-8. PubMed ID: 17662477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A general classification of water quality in Indian context.
    Sargaonkar AP; Deshpande VA
    Indian J Environ Health; 2002 Jul; 44(3):231-7. PubMed ID: 14503448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Derivation of acute ecological risk criteria for chlorite in freshwater ecosystems.
    Fisher DJ; Burton DT; Yonkos LT; Turley SD; Ziegler GP; Turley BS
    Water Res; 2003 Nov; 37(18):4359-68. PubMed ID: 14511706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Background levels of metals in St. Lawrence River sediments: implications for sediment quality criteria and environmental management.
    Saulnier I; Gagnon C
    Integr Environ Assess Manag; 2006 Apr; 2(2):126-41. PubMed ID: 16646381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the fit of biotic ligand model validation data in a risk management decision context.
    McLaughlin DB
    Integr Environ Assess Manag; 2015 Oct; 11(4):610-7. PubMed ID: 25779880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicted no-effect concentration and risk assessment for 17-[beta]-estradiol in waters of China.
    Wu F; Fang Y; Li Y; Cui X; Zhang R; Guo G; Giesy JP
    Rev Environ Contam Toxicol; 2014; 228():31-56. PubMed ID: 24162091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.