These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26936546)

  • 1. Acoustic behavior of a rigidly backed poroelastic layer with periodic resonant inclusions by a multiple scattering approach.
    Weisser T; Groby JP; Dazel O; Gaultier F; Deckers E; Futatsugi S; Monteiro L
    J Acoust Soc Am; 2016 Feb; 139(2):617-29. PubMed ID: 26936546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorption of a rigid frame porous layer with periodic circular inclusions backed by a periodic grating.
    Groby JP; Duclos A; Dazel O; Boeckx L; Lauriks W
    J Acoust Soc Am; 2011 May; 129(5):3035-46. PubMed ID: 21568407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the absorption coefficient of a backed rigid frame porous layer by embedding circular periodic inclusions.
    Groby JP; Dazel O; Duclos A; Boeckx L; Kelders L
    J Acoust Soc Am; 2011 Dec; 130(6):3771-80. PubMed ID: 22225034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using simple shape three-dimensional rigid inclusions to enhance porous layer absorption.
    Groby JP; Lagarrigue C; Brouard B; Dazel O; Tournat V; Nennig B
    J Acoust Soc Am; 2014 Sep; 136(3):1139. PubMed ID: 25190389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic properties of porous microlattices from effective medium to scattering dominated regimes.
    Krödel S; Palermo A; Daraio C
    J Acoust Soc Am; 2018 Jul; 144(1):319. PubMed ID: 30075686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scattering of acoustic waves by macroscopically inhomogeneous poroelastic tubes.
    Groby JP; Dazel O; Depollier C; Ogam E; Kelders L
    J Acoust Soc Am; 2012 Jul; 132(1):477-86. PubMed ID: 22779494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions.
    Lagarrigue C; Groby JP; Tournat V; Dazel O; Umnova O
    J Acoust Soc Am; 2013 Dec; 134(6):4670. PubMed ID: 25669279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mode matching approach for modeling two dimensional porous grating with infinitely rigid or soft inclusions.
    Nennig B; Renou Y; Groby JP; Aurégan Y
    J Acoust Soc Am; 2012 May; 131(5):3841-52. PubMed ID: 22559360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An alternative Biot's formulation for dissipative porous media with skeleton deformation.
    Bécot FX; Jaouen L
    J Acoust Soc Am; 2013 Dec; 134(6):4801. PubMed ID: 25669292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of ultrasound velocity and attenuation in numerical anisotropic porous media compared to Biot's and multiple scattering models.
    Mézière F; Muller M; Bossy E; Derode A
    Ultrasonics; 2014 Jul; 54(5):1146-54. PubMed ID: 24125533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.
    Gautier G; Kelders L; Groby JP; Dazel O; De Ryck L; Leclaire P
    J Acoust Soc Am; 2011 Sep; 130(3):1390-8. PubMed ID: 21895080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling relations for sound scattering by a lattice of hard inclusions in a soft mediuma).
    Sharma GS; Skvortsov A; MacGillivray I; Kessissoglou N
    J Acoust Soc Am; 2023 Jul; 154(1):108-114. PubMed ID: 37429026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation of elastic waves through two-dimensional lattices of cylindrical empty or water-filled inclusions in an aluminum matrix.
    Robert S; Conoir JM; Franklin H
    Ultrasonics; 2006 Dec; 45(1-4):178-87. PubMed ID: 17067650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic performance of gratings of cylindrical voids in a soft elastic medium with a steel backing.
    Sharma GS; Skvortsov A; MacGillivray I; Kessissoglou N
    J Acoust Soc Am; 2017 Jun; 141(6):4694. PubMed ID: 28679258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an analytical solution of modified Biot's equations for the optimization of lightweight acoustic protection.
    Kanfoud J; Ali Hamdi M; Becot FX; Jaouen L
    J Acoust Soc Am; 2009 Feb; 125(2):863-72. PubMed ID: 19206863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sound absorption and transmission through flexible micro-perforated panels backed by an air layer and a thin plate.
    Bravo T; Maury C; Pinhède C
    J Acoust Soc Am; 2012 May; 131(5):3853-63. PubMed ID: 22559361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing rigid frame porous layer absorption with three-dimensional periodic irregularities.
    Groby JP; Brouard B; Dazel O; Nennig B; Kelders L
    J Acoust Soc Am; 2013 Feb; 133(2):821-31. PubMed ID: 23363101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer matrix modeling and experimental validation of cellular porous material with resonant inclusions.
    Doutres O; Atalla N; Osman H
    J Acoust Soc Am; 2015 Jun; 137(6):3502-13. PubMed ID: 26093437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wave propagation in sandwich panels with a poroelastic core.
    Liu H; Finnveden S; Barbagallo M; Arteaga IL
    J Acoust Soc Am; 2014 May; 135(5):2683-93. PubMed ID: 24815252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Partition of Unity Finite Element Method for the simulation of waves in air and poroelastic media.
    Chazot JD; Perrey-Debain E; Nennig B
    J Acoust Soc Am; 2014 Feb; 135(2):724-33. PubMed ID: 25234881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.