These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26936575)

  • 1. Evolution of the temporal slope density function for waves propagating according to the inviscid Burgers equation.
    Muhlestein MB; Gee KL
    J Acoust Soc Am; 2016 Feb; 139(2):958-67. PubMed ID: 26936575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the average steepening factor for nonlinearly propagating waves.
    Muhlestein MB; Gee KL; Neilsen TB; Thomas DC
    J Acoust Soc Am; 2015 Feb; 137(2):640-50. PubMed ID: 25697999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A generalized statistical Burgers equation to predict the evolution of the power spectral density of high-intensity noise in atmosphere.
    Menounou P; Athanasiadis AN
    J Acoust Soc Am; 2009 Sep; 126(3):983-94. PubMed ID: 19739711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the derivative skewness for nonlinearly propagating waves.
    Reichman BO; Muhlestein MB; Gee KL; Neilsen TB; Thomas DC
    J Acoust Soc Am; 2016 Mar; 139(3):1390-403. PubMed ID: 27036276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burgers equation and convexification method: Propagation of wave packets and narrowband noise.
    Béquin P
    J Acoust Soc Am; 2022 Feb; 151(2):1223. PubMed ID: 35232099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new method to predict the evolution of the power spectral density for a finite-amplitude sound wave.
    Menounou P; Blackstock DT
    J Acoust Soc Am; 2004 Feb; 115(2):567-80. PubMed ID: 15000169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Educational demonstration of a spherically propagating acoustic shock.
    Muhlestein MB; Gee KL; Macedone JH
    J Acoust Soc Am; 2012 Mar; 131(3):2422-30. PubMed ID: 22423789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Propagation of nonlinear acoustic plane waves in an elastic gas-filled tube.
    Bednarik M; Cervenka M
    J Acoust Soc Am; 2009 Oct; 126(4):1681-9. PubMed ID: 19813784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plane nonlinear shear waves in relaxing media.
    Cormack JM; Hamilton MF
    J Acoust Soc Am; 2018 Feb; 143(2):1035. PubMed ID: 29495732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beam wave two-frequency mutual-coherence function and pulse propagation in random media: an analytic solution.
    Sreenivasiah I; Ishimaru A
    Appl Opt; 1979 May; 18(10):1613-8. PubMed ID: 20212901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A characteristic nonlinear distortion length for broadband Gaussian noise.
    Muhlestein MB; Gee KL
    J Acoust Soc Am; 2023 Apr; 153(4):2262. PubMed ID: 37092916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-way approximation for the simulation of weak shock wave propagation in atmospheric flows.
    Gallin LJ; Rénier M; Gaudard E; Farges T; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2014 May; 135(5):2559-70. PubMed ID: 24815240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks.
    Garra R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036605. PubMed ID: 22060520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fronts in randomly advected and heterogeneous media and nonuniversality of Burgers turbulence: theory and numerics.
    Mayo JR; Kerstein AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 2):056307. PubMed ID: 19113216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density waves in traffic flow.
    Nagatani T
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt A):3564-70. PubMed ID: 11088133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-Gaussian Bessel-beam superposition: application to the scattering of focused waves by spheres.
    Marston PL
    J Acoust Soc Am; 2011 Apr; 129(4):1773-82. PubMed ID: 21476634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic density field.
    Huete Ruiz de Lira C; Velikovich AL; Wouchuk JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056320. PubMed ID: 21728660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model for shock wave chaos.
    Kasimov AR; Faria LM; Rosales RR
    Phys Rev Lett; 2013 Mar; 110(10):104104. PubMed ID: 23521260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance phenomenon for the Galerkin-truncated Burgers and Euler equations.
    Ray SS; Frisch U; Nazarenko S; Matsumoto T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016301. PubMed ID: 21867298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of discrete sources on detonation propagation in a Burgers equation analog system.
    Mi X; Higgins AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053014. PubMed ID: 26066256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.