These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
474 related articles for article (PubMed ID: 26936697)
1. Scatter radiation intensities around a clinical digital breast tomosynthesis unit and the impact on radiation shielding considerations. Yang K; Li X; Liu B Med Phys; 2016 Mar; 43(3):1096-110. PubMed ID: 26936697 [TBL] [Abstract][Full Text] [Related]
2. Radiation shielding calculation for digital breast tomosynthesis rooms with an updated workload survey. Yang K; Schultz TJ; Li X; Liu B J Radiol Prot; 2017 Mar; 37(1):230-246. PubMed ID: 28141582 [TBL] [Abstract][Full Text] [Related]
3. Workload and transmission data for the installation of a digital breast tomosynthesis system. Li X; Zhang D; Liu B Med Phys; 2013 Jun; 40(6):063901. PubMed ID: 23718617 [TBL] [Abstract][Full Text] [Related]
4. X-ray spectroscopy applied to radiation shielding calculation in mammography. Künzel R; Levenhagen RS; Herdade SB; Terini RA; Costa PR Med Phys; 2008 Aug; 35(8):3539-45. PubMed ID: 18777914 [TBL] [Abstract][Full Text] [Related]
5. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner. Patel T; Peppard H; Williams MB Med Phys; 2016 Apr; 43(4):1720. PubMed ID: 27036570 [TBL] [Abstract][Full Text] [Related]
6. SCATTER RADIATION INTENSITIES IN HORIZONTAL AND VERTICAL PLANES ABOUT DIGITAL BREAST TOMOSYNTHESIS SYSTEM. Varcoe JG; Barnes P Radiat Prot Dosimetry; 2022 Feb; 198(1-2):119-127. PubMed ID: 35137230 [TBL] [Abstract][Full Text] [Related]
7. A deep learning approach to estimate x-ray scatter in digital breast tomosynthesis: From phantom models to clinical applications. Pinto MC; Mauter F; Michielsen K; Biniazan R; Kappler S; Sechopoulos I Med Phys; 2023 Aug; 50(8):4744-4757. PubMed ID: 37394837 [TBL] [Abstract][Full Text] [Related]
8. Scatter radiation in digital tomosynthesis of the breast. Sechopoulos I; Suryanarayanan S; Vedantham S; D'Orsi CJ; Karellas A Med Phys; 2007 Feb; 34(2):564-76. PubMed ID: 17388174 [TBL] [Abstract][Full Text] [Related]
9. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update. Kim K; Lee T; Seong Y; Lee J; Jang KE; Choi J; Choi YW; Kim HH; Shin HJ; Cha JH; Cho S; Ye JC Med Phys; 2015 Sep; 42(9):5342-55. PubMed ID: 26328983 [TBL] [Abstract][Full Text] [Related]
10. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array. Qian X; Tucker A; Gidcumb E; Shan J; Yang G; Calderon-Colon X; Sultana S; Lu J; Zhou O; Spronk D; Sprenger F; Zhang Y; Kennedy D; Farbizio T; Jing Z Med Phys; 2012 Apr; 39(4):2090-9. PubMed ID: 22482630 [TBL] [Abstract][Full Text] [Related]
11. Using aluminum for scatter control in mammography: preliminary work using measurements of CNR and FOM. Al Khalifah K; Davidson R; Zhou A Radiol Phys Technol; 2020 Mar; 13(1):37-44. PubMed ID: 31749130 [TBL] [Abstract][Full Text] [Related]
12. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system. Rodrigues L; Magalhaes LA; Braz D Radiat Prot Dosimetry; 2015 Dec; 167(4):576-83. PubMed ID: 25480841 [TBL] [Abstract][Full Text] [Related]
13. Comparative power law analysis of structured breast phantom and patient images in digital mammography and breast tomosynthesis. Cockmartin L; Bosmans H; Marshall NW Med Phys; 2013 Aug; 40(8):081920. PubMed ID: 23927334 [TBL] [Abstract][Full Text] [Related]
14. Clinical digital breast tomosynthesis system: dosimetric characterization. Feng SS; Sechopoulos I Radiology; 2012 Apr; 263(1):35-42. PubMed ID: 22332070 [TBL] [Abstract][Full Text] [Related]
15. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms. Baptista M; Di Maria S; Barros S; Figueira C; Sarmento M; Orvalho L; Vaz P Med Phys; 2015 Jul; 42(7):3788-800. PubMed ID: 26133581 [TBL] [Abstract][Full Text] [Related]
16. COMPARISON OF SPECTRA AND MEAN GLANDULAR DOSE WITH TUBE VOLTAGES USED IN DIGITAL BREAST TOMOSYNTHESIS FROM SIMULATED, METROLOGICAL AND CLINICAL CASES. da Silveira Gatto LB; Braz D; Pacifico L; Travassos P; Magalhaes LAG Radiat Prot Dosimetry; 2020 Dec; 192(3):402-412. PubMed ID: 33320943 [TBL] [Abstract][Full Text] [Related]
17. TU-E-217BCD-11: Evaluating the Performance of a Stationary Digital Breast Tomosynthesis System. Tucker A; Gidcumb E; Shan J; Qian X; Sprenger F; Spronk D; Zhang Y; Kennedy D; Farbizio T; Ruth C; Jing Z; Lu J; Zhou O Med Phys; 2012 Jun; 39(6Part24):3916. PubMed ID: 28518705 [TBL] [Abstract][Full Text] [Related]
18. Image quality of microcalcifications in digital breast tomosynthesis: effects of projection-view distributions. Lu Y; Chan HP; Wei J; Goodsitt M; Carson PL; Hadjiiski L; Schmitz A; Eberhard JW; Claus BE Med Phys; 2011 Oct; 38(10):5703-12. PubMed ID: 21992385 [TBL] [Abstract][Full Text] [Related]
19. Characterization of scatter in digital mammography from physical measurements. Leon SM; Brateman LF; Wagner LK Med Phys; 2014 Jun; 41(6):061901. PubMed ID: 24877812 [TBL] [Abstract][Full Text] [Related]