These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26936706)

  • 1. Sample size requirements for knowledge-based treatment planning.
    Boutilier JJ; Craig T; Sharpe MB; Chan TC
    Med Phys; 2016 Mar; 43(3):1212-21. PubMed ID: 26936706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Efficient Training, Refinement, and Validation of a Knowledge-based Planning Quality-Control System for Radiation Therapy Clinical Trials.
    Li N; Carmona R; Sirak I; Kasaova L; Followill D; Michalski J; Bosch W; Straube W; Mell LK; Moore KL
    Int J Radiat Oncol Biol Phys; 2017 Jan; 97(1):164-172. PubMed ID: 27979445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting dose-volume histograms for organs-at-risk in IMRT planning.
    Appenzoller LM; Michalski JM; Thorstad WL; Mutic S; Moore KL
    Med Phys; 2012 Dec; 39(12):7446-61. PubMed ID: 23231294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Models for predicting objective function weights in prostate cancer IMRT.
    Boutilier JJ; Lee T; Craig T; Sharpe MB; Chan TC
    Med Phys; 2015 Apr; 42(4):1586-95. PubMed ID: 25832049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pareto-optimal plans as ground truth for validation of a commercial system for knowledge-based DVH-prediction.
    Cagni E; Botti A; Wang Y; Iori M; Petit SF; Heijmen BJM
    Phys Med; 2018 Nov; 55():98-106. PubMed ID: 30471826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dosimetric features-driven machine learning model for DVH prediction in VMAT treatment planning.
    Ma M; Kovalchuk N; Buyyounouski MK; Xing L; Yang Y
    Med Phys; 2019 Feb; 46(2):857-867. PubMed ID: 30536442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating human and learned domain knowledge into training deep neural networks: A differentiable dose-volume histogram and adversarial inspired framework for generating Pareto optimal dose distributions in radiation therapy.
    Nguyen D; McBeth R; Sadeghnejad Barkousaraie A; Bohara G; Shen C; Jia X; Jiang S
    Med Phys; 2020 Mar; 47(3):837-849. PubMed ID: 31821577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knowledge-based automated planning for oropharyngeal cancer.
    Babier A; Boutilier JJ; McNiven AL; Chan TCY
    Med Phys; 2018 Jul; 45(7):2875-2883. PubMed ID: 29679492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans.
    Yuan L; Ge Y; Lee WR; Yin FF; Kirkpatrick JP; Wu QJ
    Med Phys; 2012 Nov; 39(11):6868-78. PubMed ID: 23127079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of knowledge based DVH predictions to enhance automated re-planning strategies in head and neck adaptive radiotherapy.
    Cagni E; Botti A; Chendi A; Iori M; Spezi E
    Phys Med Biol; 2021 Jun; 66(13):. PubMed ID: 34098549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiently train and validate a RapidPlan model through APQM scoring.
    Fusella M; Scaggion A; Pivato N; Rossato MA; Zorz A; Paiusco M
    Med Phys; 2018 Jun; 45(6):2611-2619. PubMed ID: 29611213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OpenKBP: The open-access knowledge-based planning grand challenge and dataset.
    Babier A; Zhang B; Mahmood R; Moore KL; Purdie TG; McNiven AL; Chan TCY
    Med Phys; 2021 Sep; 48(9):5549-5561. PubMed ID: 34156719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dose-shaping using targeted sparse optimization.
    Sayre GA; Ruan D
    Med Phys; 2013 Jul; 40(7):071711. PubMed ID: 23822415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overlap-volume-histogram based method for rectal dose prediction and automated treatment planning in the external beam prostate radiotherapy following hydrogel injection.
    Yang Y; Ford EC; Wu B; Pinkawa M; van Triest B; Campbell P; Song DY; McNutt TR
    Med Phys; 2013 Jan; 40(1):011709. PubMed ID: 23298079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-defining rectal volume and DVH for analysis of rectal morbidity risk after radiotherapy for early prostate cancer.
    O'Donnell HE; Finnegan K; Eliades H; Oliveros S; Plowman PN
    Br J Radiol; 2008 Apr; 81(964):327-32. PubMed ID: 18344276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting objective function weights from patient anatomy in prostate IMRT treatment planning.
    Lee T; Hammad M; Chan TC; Craig T; Sharpe MB
    Med Phys; 2013 Dec; 40(12):121706. PubMed ID: 24320492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective clinical validation of independent DVH prediction for plan QA in automatic treatment planning for prostate cancer patients.
    Wang Y; Heijmen BJM; Petit SF
    Radiother Oncol; 2017 Dec; 125(3):500-506. PubMed ID: 29061497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of volumetric modulated arc therapy patient specific QA results to multileaf collimator errors and correlation to dose volume histogram based metrics.
    Coleman L; Skourou C
    Med Phys; 2013 Nov; 40(11):111715. PubMed ID: 24320423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Penalized likelihood fluence optimization with evolutionary components for intensity modulated radiation therapy treatment planning.
    Baydush AH; Marks LB; Das SK
    Med Phys; 2004 Aug; 31(8):2335-43. PubMed ID: 15377100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning.
    Zarepisheh M; Long T; Li N; Tian Z; Romeijn HE; Jia X; Jiang SB
    Med Phys; 2014 Jun; 41(6):061711. PubMed ID: 24877806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.