BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 26936739)

  • 21. A Case for Wide-Angle Breast Tomosynthesis.
    Samei E; Thompson J; Richard S; Bowsher J
    Acad Radiol; 2015 Jul; 22(7):860-9. PubMed ID: 25920335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ROC study of the effect of stereoscopic imaging on assessment of breast lesions.
    Chan HP; Goodsitt MM; Helvie MA; Hadjiiski LM; Lydick JT; Roubidoux MA; Bailey JE; Nees A; Blane CE; Sahiner B
    Med Phys; 2005 Apr; 32(4):1001-9. PubMed ID: 15895583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of prior mammograms on combined reading of digital mammography and digital breast tomosynthesis.
    Kim WH; Chang JM; Koo HR; Seo M; Bae MS; Lee J; Moon WK
    Acta Radiol; 2017 Feb; 58(2):148-155. PubMed ID: 27178032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. X-ray scatter correction in breast tomosynthesis with a precomputed scatter map library.
    Feng SS; D'Orsi CJ; Newell MS; Seidel RL; Patel B; Sechopoulos I
    Med Phys; 2014 Mar; 41(3):031912. PubMed ID: 24593730
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis.
    Shaheen E; De Keyzer F; Bosmans H; Dance DR; Young KC; Van Ongeval C
    Med Phys; 2014 Aug; 41(8):081913. PubMed ID: 25086544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New reconstruction algorithm for digital breast tomosynthesis: better image quality for humans and computers.
    Rodriguez-Ruiz A; Teuwen J; Vreemann S; Bouwman RW; van Engen RE; Karssemeijer N; Mann RM; Gubern-Merida A; Sechopoulos I
    Acta Radiol; 2018 Sep; 59(9):1051-1059. PubMed ID: 29254355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Digital breast tomosynthesis: observer performance study.
    Gur D; Abrams GS; Chough DM; Ganott MA; Hakim CM; Perrin RL; Rathfon GY; Sumkin JH; Zuley ML; Bandos AI
    AJR Am J Roentgenol; 2009 Aug; 193(2):586-91. PubMed ID: 19620460
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulated lesion, human observer performance comparison between thin-section dedicated breast CT images versus computed thick-section simulated projection images of the breast.
    Chen L; Boone JM; Abbey CK; Hargreaves J; Bateni C; Lindfors KK; Yang K; Nosratieh A; Hernandez A; Gazi P
    Phys Med Biol; 2015 Apr; 60(8):3347-58. PubMed ID: 25825980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A deep learning approach to estimate x-ray scatter in digital breast tomosynthesis: From phantom models to clinical applications.
    Pinto MC; Mauter F; Michielsen K; Biniazan R; Kappler S; Sechopoulos I
    Med Phys; 2023 Aug; 50(8):4744-4757. PubMed ID: 37394837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Digital breast tomosynthesis: a pilot observer study.
    Good WF; Abrams GS; Catullo VJ; Chough DM; Ganott MA; Hakim CM; Gur D
    AJR Am J Roentgenol; 2008 Apr; 190(4):865-9. PubMed ID: 18356430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computer-aided detection of masses in digital tomosynthesis mammography: comparison of three approaches.
    Chan HP; Wei J; Zhang Y; Helvie MA; Moore RH; Sahiner B; Hadjiiski L; Kopans DB
    Med Phys; 2008 Sep; 35(9):4087-95. PubMed ID: 18841861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain.
    Leng S; Yu L; Zhang Y; Carter R; Toledano AY; McCollough CH
    Med Phys; 2013 Aug; 40(8):081908. PubMed ID: 23927322
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of digital breast tomosynthesis and 2D digital mammography using a hybrid performance test.
    Cockmartin L; Marshall NW; Van Ongeval C; Aerts G; Stalmans D; Zanca F; Shaheen E; De Keyzer F; Dance DR; Young KC; Bosmans H
    Phys Med Biol; 2015 May; 60(10):3939-58. PubMed ID: 25909596
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of human and model observers in multislice LROC studies.
    Gifford HC; King MA; Pretorius PH; Wells RG
    IEEE Trans Med Imaging; 2005 Feb; 24(2):160-9. PubMed ID: 15707242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of 4D mathematical observer models for the task-based evaluation of gated myocardial perfusion SPECT.
    Lee TS; Frey EC; Tsui BM
    Phys Med Biol; 2015 Apr; 60(7):2751-63. PubMed ID: 25768980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the correlation between second order texture features and human observer detection performance in digital images.
    Nisbett WH; Kavuri A; Das M
    Sci Rep; 2020 Aug; 10(1):13510. PubMed ID: 32782415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of digital breast tomosynthesis (DBT) acquisition parameters for human observers: effect of reconstruction algorithms.
    Zeng R; Badano A; Myers KJ
    Phys Med Biol; 2017 Apr; 62(7):2598-2611. PubMed ID: 28151728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of image quality on calcification detection in digital mammography.
    Warren LM; Mackenzie A; Cooke J; Given-Wilson RM; Wallis MG; Chakraborty DP; Dance DR; Bosmans H; Young KC
    Med Phys; 2012 Jun; 39(6):3202-13. PubMed ID: 22755704
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toward image quality assessment in mammography using model observers: Detection of a calcification-like object.
    Bouwman RW; Mackenzie A; van Engen RE; Broeders MJM; Young KC; Dance DR; den Heeten GJ; Veldkamp WJH
    Med Phys; 2017 Nov; 44(11):5726-5739. PubMed ID: 28837225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative imaging in breast tomosynthesis and CT: comparison of detection and estimation task performance.
    Richard S; Samei E
    Med Phys; 2010 Jun; 37(6):2627-37. PubMed ID: 20632574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.