BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 26936792)

  • 1. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice.
    Mikami M; Toki S; Endo M
    Plant Cell Physiol; 2016 May; 57(5):1058-68. PubMed ID: 26936792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiplexed Simian Immunodeficiency Virus-Specific Paired RNA-Guided Cas9 Nickases Inactivate Proviral DNA.
    Smith LM; Ladner JT; Hodara VL; Parodi LM; Harris RA; Callery JE; Lai Z; Zou Y; Raveedran M; Rogers J; Giavedoni LD
    J Virol; 2021 Nov; 95(23):e0088221. PubMed ID: 34549979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient genome editing by FACS enrichment of paired D10A Cas9 nickases coupled with fluorescent proteins.
    Gopalappa R; Song M; Chandrasekaran AP; Das S; Haq S; Koh HC; Ramakrishna S
    Arch Pharm Res; 2018 Sep; 41(9):911-920. PubMed ID: 29855892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny.
    Schiml S; Fauser F; Puchta H
    Plant J; 2014 Dec; 80(6):1139-50. PubMed ID: 25327456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target-dependent nickase activities of the CRISPR-Cas nucleases Cpf1 and Cas9.
    Fu BXH; Smith JD; Fuchs RT; Mabuchi M; Curcuru J; Robb GB; Fire AZ
    Nat Microbiol; 2019 May; 4(5):888-897. PubMed ID: 30833733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas-Mediated Site-Specific Mutagenesis in Arabidopsis thaliana Using Cas9 Nucleases and Paired Nickases.
    Schiml S; Fauser F; Puchta H
    Methods Mol Biol; 2016; 1469():111-22. PubMed ID: 27557689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice.
    Endo M; Mikami M; Toki S
    Plant Cell Physiol; 2015 Jan; 56(1):41-7. PubMed ID: 25392068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs.
    Fu Y; Sander JD; Reyon D; Cascio VM; Joung JK
    Nat Biotechnol; 2014 Mar; 32(3):279-284. PubMed ID: 24463574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing Heritable Mutations in Arabidopsis thaliana Using a Modified CRISPR/Cas9 Toolkit Comprising PAM-Altered Cas9 Variants and gRNAs.
    Yamamoto A; Ishida T; Yoshimura M; Kimura Y; Sawa S
    Plant Cell Physiol; 2019 Oct; 60(10):2255-2262. PubMed ID: 31198958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice.
    Mikami M; Toki S; Endo M
    Plant Cell Rep; 2015 Oct; 34(10):1807-15. PubMed ID: 26134856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs.
    Fu Y; Reyon D; Joung JK
    Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice.
    Tang X; Liu G; Zhou J; Ren Q; You Q; Tian L; Xin X; Zhong Z; Liu B; Zheng X; Zhang D; Malzahn A; Gong Z; Qi Y; Zhang T; Zhang Y
    Genome Biol; 2018 Jul; 19(1):84. PubMed ID: 29973285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.
    Cho SW; Kim S; Kim Y; Kweon J; Kim HS; Bae S; Kim JS
    Genome Res; 2014 Jan; 24(1):132-41. PubMed ID: 24253446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize.
    Lee K; Zhang Y; Kleinstiver BP; Guo JA; Aryee MJ; Miller J; Malzahn A; Zarecor S; Lawrence-Dill CJ; Joung JK; Qi Y; Wang K
    Plant Biotechnol J; 2019 Feb; 17(2):362-372. PubMed ID: 29972722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex nucleotide editing by high-fidelity Cas9 variants with improved efficiency in rice.
    Xu W; Song W; Yang Y; Wu Y; Lv X; Yuan S; Liu Y; Yang J
    BMC Plant Biol; 2019 Nov; 19(1):511. PubMed ID: 31752697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana.
    Fauser F; Schiml S; Puchta H
    Plant J; 2014 Jul; 79(2):348-59. PubMed ID: 24836556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR Genome Editing Made Easy Through the CHOPCHOP Website.
    Labun K; Krause M; Torres Cleuren Y; Valen E
    Curr Protoc; 2021 Apr; 1(4):e46. PubMed ID: 33905612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-guided genome editing in plants using a CRISPR-Cas system.
    Xie K; Yang Y
    Mol Plant; 2013 Nov; 6(6):1975-83. PubMed ID: 23956122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system.
    Chen X; Lu X; Shu N; Wang S; Wang J; Wang D; Guo L; Ye W
    Sci Rep; 2017 Mar; 7():44304. PubMed ID: 28287154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.