These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

606 related articles for article (PubMed ID: 26936953)

  • 21. A comprehensive evaluation of the effects and mechanisms of antifreeze proteins during low-temperature preservation.
    Wang JH
    Cryobiology; 2000 Aug; 41(1):1-9. PubMed ID: 11017755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of Ice Recrystallization Inhibition Assays to Screen for Compounds That Inhibit Ice Recrystallization.
    Ampaw AA; Sibthorpe A; Ben RN
    Methods Mol Biol; 2021; 2180():271-283. PubMed ID: 32797415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brassica juncea leaf cuticle contains xylose and mannose (xylomannan) which inhibit ice recrystallization on the leaf surface.
    Yadav K; Arya M; Prakash S; Jha BS; Manchanda P; Kumar A; Deswal R
    Planta; 2023 Jul; 258(2):44. PubMed ID: 37460860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antifreeze effect of carboxylated ε-poly-L-lysine on the growth kinetics of ice crystals.
    Vorontsov DA; Sazaki G; Hyon SH; Matsumura K; Furukawa Y
    J Phys Chem B; 2014 Aug; 118(34):10240-9. PubMed ID: 25113284
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and Evaluation of Cryoprotective Peptides from Chicken Collagen: Ice-Growth Inhibition Activity Compared to That of Type I Antifreeze Proteins in Sucrose Model Systems.
    Du L; Betti M
    J Agric Food Chem; 2016 Jun; 64(25):5232-40. PubMed ID: 27293017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superheating of ice crystals in antifreeze protein solutions.
    Celik Y; Graham LA; Mok YF; Bar M; Davies PL; Braslavsky I
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5423-8. PubMed ID: 20215465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct measurement of the thermal hysteresis of antifreeze proteins (AFPs) using sonocrystallization.
    Gaede-Koehler A; Kreider A; Canfield P; Kleemeier M; Grunwald I
    Anal Chem; 2012 Dec; 84(23):10229-35. PubMed ID: 23121544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utilizing avidity to improve antifreeze protein activity: a type III antifreeze protein trimer exhibits increased thermal hysteresis activity.
    Can Ö; Holland NB
    Biochemistry; 2013 Dec; 52(48):8745-52. PubMed ID: 24191717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular basis of ice-binding and cryopreservation activities of type III antifreeze proteins.
    Choi SR; Lee J; Seo YJ; Kong HS; Kim M; Jin E; Lee JR; Lee JH
    Comput Struct Biotechnol J; 2021; 19():897-909. PubMed ID: 33598104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Peptidic Antifreeze Materials: Prospects and Challenges.
    Surís-Valls R; Voets IK
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL
    J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dendrimer-Linked Antifreeze Proteins Have Superior Activity and Thermal Recovery.
    Stevens CA; Drori R; Zalis S; Braslavsky I; Davies PL
    Bioconjug Chem; 2015 Sep; 26(9):1908-15. PubMed ID: 26267368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antifreeze proteins modify the freezing process in planta.
    Griffith M; Lumb C; Wiseman SB; Wisniewski M; Johnson RW; Marangoni AG
    Plant Physiol; 2005 May; 138(1):330-40. PubMed ID: 15805474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences.
    Hanada Y; Nishimiya Y; Miura A; Tsuda S; Kondo H
    FEBS J; 2014 Aug; 281(16):3576-90. PubMed ID: 24938370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ice-surface adsorption enhanced colligative effect of antifreeze proteins in ice growth inhibition.
    Mao Y; Ba Y
    J Chem Phys; 2006 Sep; 125(9):091102. PubMed ID: 16965064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights into Design of Biomimetic Glycerol-Grafted Polyol-Based Polymers for Ice Nucleation/Recrystallization Inhibition and Thermal Hysteresis Activity.
    Mousazadehkasin M; Tsavalas JG
    Biomacromolecules; 2020 Nov; 21(11):4626-4637. PubMed ID: 32820904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Do antifreeze proteins generally possess the potential to promote ice growth?
    Cui S; Zhang W; Shao X; Cai W
    Phys Chem Chem Phys; 2022 Mar; 24(13):7901-7908. PubMed ID: 35311839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of growth of nonbasal planes in ice by fish antifreezes.
    Raymond JA; Wilson P; DeVries AL
    Proc Natl Acad Sci U S A; 1989 Feb; 86(3):881-5. PubMed ID: 2915983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of cooling rate, annealing time and biological antifreeze concentration on thermal hysteresis reading.
    Kubota N
    Cryobiology; 2011 Dec; 63(3):198-209. PubMed ID: 21884689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Annealing condition influences thermal hysteresis of fungal type ice-binding proteins.
    Xiao N; Hanada Y; Seki H; Kondo H; Tsuda S; Hoshino T
    Cryobiology; 2014 Feb; 68(1):159-61. PubMed ID: 24201106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.