These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26936979)

  • 21. The use of non-motion-based cues to pre-programme the timing of predictive velocity reversal in human smooth pursuit.
    Jarrett C; Barnes G
    Exp Brain Res; 2005 Aug; 164(4):423-30. PubMed ID: 15891872
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonlinear postural control in response to visual translation.
    Ravaioli E; Oie KS; Kiemel T; Chiari L; Jeka JJ
    Exp Brain Res; 2005 Jan; 160(4):450-9. PubMed ID: 15480604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of long-term gait training using visual cues in an individual with Parkinson disease.
    Sidaway B; Anderson J; Danielson G; Martin L; Smith G
    Phys Ther; 2006 Feb; 86(2):186-94. PubMed ID: 16445332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Auditory observation of stepping actions can cue both spatial and temporal components of gait in Parkinson׳s disease patients.
    Young WR; Rodger MW; Craig CM
    Neuropsychologia; 2014 May; 57():140-53. PubMed ID: 24680722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinematic trajectories in response to speed perturbations in walking suggest modular task-level control of leg angle and length.
    Schwaner MJ; Nishikawa KC; Daley MA
    Integr Comp Biol; 2022 May; ():. PubMed ID: 35612979
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets.
    Becker W; Nasios G; Raab S; Jürgens R
    Exp Brain Res; 2002 Jun; 144(4):458-74. PubMed ID: 12037631
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction between different sensory cues in the control of human gait.
    Varraine E; Bonnard M; Pailhous J
    Exp Brain Res; 2002 Feb; 142(3):374-84. PubMed ID: 11819046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Timing-specific transfer of adapted muscle activity after walking in an elastic force field.
    Blanchette A; Bouyer LJ
    J Neurophysiol; 2009 Jul; 102(1):568-77. PubMed ID: 19420121
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional kinematics and dynamics of the foot during walking: a model of central control mechanisms.
    Osaki Y; Kunin M; Cohen B; Raphan T
    Exp Brain Res; 2007 Jan; 176(3):476-96. PubMed ID: 16917770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of parallel and transverse visual cues on the gait of individuals with idiopathic Parkinson's disease.
    de Melo Roiz R; Azevedo Cacho EW; Cliquet A; Barasnevicius Quagliato EM
    Int J Rehabil Res; 2011 Dec; 34(4):343-8. PubMed ID: 22044986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual contribution to human standing balance during support surface tilts.
    Assländer L; Hettich G; Mergner T
    Hum Mov Sci; 2015 Jun; 41():147-64. PubMed ID: 25816794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Clinical impact of gait training enhanced with visual kinematic biofeedback: Patients with Parkinson's disease and patients stable post stroke.
    Byl N; Zhang W; Coo S; Tomizuka M
    Neuropsychologia; 2015 Dec; 79(Pt B):332-43. PubMed ID: 25912760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impact of attentional, auditory, and combined cues on walking during single and cognitive dual tasks in Parkinson disease.
    Lohnes CA; Earhart GM
    Gait Posture; 2011 Mar; 33(3):478-83. PubMed ID: 21273075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parkinsonian gait ameliorated with a moving handrail, not with a banister.
    Rabin E; Demin A; Pirrotta S; Chen J; Patel H; Bhambri A; Noyola E; Lackner JR; DiZio P; DiFrancisco-Donoghue J; Werner W
    Arch Phys Med Rehabil; 2015 Apr; 96(4):735-41. PubMed ID: 25286436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dopaminergic modulation of timing control and variability in the gait of Parkinson's disease.
    Almeida QJ; Frank JS; Roy EA; Patla AE; Jog MS
    Mov Disord; 2007 Sep; 22(12):1735-42. PubMed ID: 17557356
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for a disorder of locomotor timing in Huntington's disease.
    Bilney B; Morris ME; Churchyard A; Chiu E; Georgiou-Karistianis N
    Mov Disord; 2005 Jan; 20(1):51-7. PubMed ID: 15390128
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual and cutaneous triggering of rapid step initiation.
    Kukulka CG; Hajela N; Olson E; Peters A; Podratz K; Quade C
    Exp Brain Res; 2009 Jan; 192(2):167-73. PubMed ID: 18807020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of intrathecal baclofen bolus injection on temporospatial gait characteristics in patients with acquired brain injury.
    Horn TS; Yablon SA; Stokic DS
    Arch Phys Med Rehabil; 2005 Jun; 86(6):1127-33. PubMed ID: 15954050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sagittal plane loading response during gait in different age groups and in people with knee osteoarthritis.
    Chen CP; Chen MJ; Pei YC; Lew HL; Wong PY; Tang SF
    Am J Phys Med Rehabil; 2003 Apr; 82(4):307-12. PubMed ID: 12649658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biomechanical and clinical correlates of swing-phase knee flexion in individuals with spastic cerebral palsy who walk with flexed-knee gait.
    Rha DW; Cahill-Rowley K; Young J; Torburn L; Stephenson K; Rose J
    Arch Phys Med Rehabil; 2015 Mar; 96(3):511-7. PubMed ID: 25450128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.