These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26937042)

  • 1. Highly stretchable wrinkled gold thin film wires.
    Kim J; Park SJ; Nguyen T; Chu M; Pegan JD; Khine M
    Appl Phys Lett; 2016 Feb; 108(6):061901. PubMed ID: 26937042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Multi-Material Structured Thin Film Transfer to Elastomers for Stretchable Electronic Devices.
    Ding X; Moran-Mirabal JM
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Stretchable Room-Temperature Self-Healing Conductors Based on Wrinkled Graphene Films for Flexible Electronics.
    Yan S; Zhang G; Jiang H; Li F; Zhang L; Xia Y; Wang Z; Wu Y; Li H
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10736-10744. PubMed ID: 30801171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates.
    Tang J; Guo H; Zhao M; Yang J; Tsoukalas D; Zhang B; Liu J; Xue C; Zhang W
    Sci Rep; 2015 Nov; 5():16527. PubMed ID: 26585636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining High Sensitivity and Dynamic Range: Wearable Thin-Film Composite Strain Sensors of Graphene, Ultrathin Palladium, and PEDOT:PSS.
    Ramírez J; Rodriquez D; Urbina A; Cardenas A; Lipomi DJ
    ACS Appl Nano Mater; 2019 Apr; 2(4):2222-2229. PubMed ID: 33829151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Omnidirectionally Stretchable Organic Transistors for Use in Wearable Electronics: Ensuring Overall Stretchability by Applying Nonstretchable Wrinkled Components.
    Choi G; Oh S; Kim C; Lee K; An TK; Lee J; Jang Y; Lee HS
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32979-32986. PubMed ID: 32602339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Metal-Like Conductive Elastomer with a Hierarchical Wrinkled Structure.
    Lee S; Song Y; Ko Y; Ko Y; Ko J; Kwon CH; Huh J; Kim SW; Yeom B; Cho J
    Adv Mater; 2020 Feb; 32(7):e1906460. PubMed ID: 31830359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Fabrication of Ultra-Stretchable Metallic Nanocluster Films for Wearable Electronics.
    Venugopalan V; Lamboll R; Joshi D; Narayan KS
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):28010-28018. PubMed ID: 28703571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Highly Sensitive Capacitive-type Strain Sensor Using Wrinkled Ultrathin Gold Films.
    Nur R; Matsuhisa N; Jiang Z; Nayeem MOG; Yokota T; Someya T
    Nano Lett; 2018 Sep; 18(9):5610-5617. PubMed ID: 30070850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splash-Resistant and Light-Weight Silk-Sheathed Wires for Textile Electronics.
    Yin Z; Jian M; Wang C; Xia K; Liu Z; Wang Q; Zhang M; Wang H; Liang X; Liang X; Long Y; Yu X; Zhang Y
    Nano Lett; 2018 Nov; 18(11):7085-7091. PubMed ID: 30278140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Electronics, and Healthcare.
    Do TN; Visell Y
    Sci Rep; 2017 May; 7(1):1753. PubMed ID: 28496101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spirally Structured Conductive Composites for Highly Stretchable, Robust Conductors and Sensors.
    Wu X; Han Y; Zhang X; Lu C
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):23007-23016. PubMed ID: 28636322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Stretchable, Weavable, and Washable Piezoresistive Microfiber Sensors.
    Yu L; Yeo JC; Soon RH; Yeo T; Lee HH; Lim CT
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12773-12780. PubMed ID: 29582649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale Nickel-Based Thin Films as Highly Conductive Electrodes for Dielectric Elastomer Applications with Extremely High Stretchability up to 200.
    Hubertus J; Neu J; Croce S; Rizzello G; Seelecke S; Schultes G
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39894-39904. PubMed ID: 34375081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interface-Controlled Conductive Fibers for Wearable Strain Sensors and Stretchable Conducting Wires.
    Cao Z; Wang R; He T; Xu F; Sun J
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):14087-14096. PubMed ID: 29613767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous and air-compatible fabrication of high-performance conductive textiles.
    Wang X; Yan C; Hu H; Zhou X; Guo R; Liu X; Xie Z; Huang Z; Zheng Z
    Chem Asian J; 2014 Aug; 9(8):2170-7. PubMed ID: 24867263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extremely stretchable and conductive water-repellent coatings for low-cost ultra-flexible electronics.
    Mates JE; Bayer IS; Palumbo JM; Carroll PJ; Megaridis CM
    Nat Commun; 2015 Nov; 6():8874. PubMed ID: 26593742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance, stretchable, wire-shaped supercapacitors.
    Chen T; Hao R; Peng H; Dai L
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):618-22. PubMed ID: 25404509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Nanotube Thin Films for High-Performance Flexible Electronics Applications.
    Hirotani J; Ohno Y
    Top Curr Chem (Cham); 2019 Jan; 377(1):3. PubMed ID: 30600416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low cost, biocompatible elastic and conformable electronic technologies using MID in stretchable polymer.
    Axisa F; Brosteaux D; De Leersnyder E; Bossuyt F; Gonzalez M; De Smet N; Schacht E; Rymarczyk-Machal M; Vanfleteren J
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6593-6. PubMed ID: 18003536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.