BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26937678)

  • 1. Lamb Wave-Based Acoustic Radiation Force-Driven Particle Ring Formation Inside a Sessile Droplet.
    Destgeer G; Ha B; Park J; Sung HJ
    Anal Chem; 2016 Apr; 88(7):3976-81. PubMed ID: 26937678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration.
    Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ
    Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle Separation inside a Sessile Droplet with Variable Contact Angle Using Surface Acoustic Waves.
    Destgeer G; Jung JH; Park J; Ahmed H; Sung HJ
    Anal Chem; 2017 Jan; 89(1):736-744. PubMed ID: 27959499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet.
    Rogers PR; Friend JR; Yeo LY
    Lab Chip; 2010 Nov; 10(21):2979-85. PubMed ID: 20737070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poloidal flow and toroidal particle ring formation in a sessile drop driven by megahertz order vibration.
    Rezk AR; Yeo LY; Friend JR
    Langmuir; 2014 Sep; 30(37):11243-7. PubMed ID: 25186138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets.
    Peng T; Li L; Zhou M; Jiang F
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Pumpless Acoustofluidic Platform for Size-Selective Concentration and Separation of Microparticles.
    Ahmed H; Destgeer G; Park J; Jung JH; Ahmad R; Park K; Sung HJ
    Anal Chem; 2017 Dec; 89(24):13575-13581. PubMed ID: 29156880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of cancer cells in a sessile droplet
    Nam H; Sung HJ; Park J; Jeon JS
    Lab Chip; 2021 Dec; 22(1):47-56. PubMed ID: 34821225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Detection in Droplet Microfluidics by Acoustic Vortex Modulation of Particle Rings and Particle Clusters via Asymmetric Propagation of Surface Acoustic Waves.
    Liu Y; Ji M; Yu N; Zhao C; Xue G; Fu W; Qiao X; Zhang Y; Chou X; Geng W
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves.
    Hsu JC; Chang CY
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles.
    Hahn P; Leibacher I; Baasch T; Dual J
    Lab Chip; 2015 Nov; 15(22):4302-13. PubMed ID: 26448531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves.
    Nama N; Barnkob R; Mao Z; Kähler CJ; Costanzo F; Huang TJ
    Lab Chip; 2015 Jun; 15(12):2700-9. PubMed ID: 26001199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.
    Collins DJ; Ma Z; Ai Y
    Anal Chem; 2016 May; 88(10):5513-22. PubMed ID: 27102956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface acoustic wave concentration of particle and bioparticle suspensions.
    Li H; Friend JR; Yeo LY
    Biomed Microdevices; 2007 Oct; 9(5):647-56. PubMed ID: 17530412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced acoustic resonator dimensions improve focusing efficiency of bacteria and submicron particles.
    Ugawa M; Lee H; Baasch T; Lee M; Kim S; Jeong O; Choi YH; Sohn D; Laurell T; Ota S; Lee S
    Analyst; 2022 Jan; 147(2):274-281. PubMed ID: 34889326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustofluidic Separation of Proteins Using Aptamer-Functionalized Microparticles.
    Afzal M; Park J; Jeon JS; Akmal M; Yoon TS; Sung HJ
    Anal Chem; 2021 Jun; 93(23):8309-8317. PubMed ID: 34075739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submicron Particle Concentration and Patterning with Ultralow Frequency Acoustic Vibration.
    Zhou Y; Ma Z; Ai Y
    Anal Chem; 2020 Oct; 92(19):12795-12800. PubMed ID: 32894949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.