These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 26937847)
1. Assorted Phenoxyl-Radical Polymers and Their Application in Lithium-Organic Batteries. Jähnert T; Hager MD; Schubert US Macromol Rapid Commun; 2016 Apr; 37(8):725-30. PubMed ID: 26937847 [TBL] [Abstract][Full Text] [Related]
2. Polymers based on stable phenoxyl radicals for the use in organic radical batteries. Jähnert T; Häupler B; Janoschka T; Hager MD; Schubert US Macromol Rapid Commun; 2014 May; 35(9):882-7. PubMed ID: 24652613 [TBL] [Abstract][Full Text] [Related]
3. Quasi-solid-state rechargeable lithium-ion batteries with a calix[4]quinone cathode and gel polymer electrolyte. Huang W; Zhu Z; Wang L; Wang S; Li H; Tao Z; Shi J; Guan L; Chen J Angew Chem Int Ed Engl; 2013 Aug; 52(35):9162-6. PubMed ID: 23825051 [No Abstract] [Full Text] [Related]
4. Poly(exTTF): a novel redox-active polymer as active material for li-organic batteries. Häupler B; Burges R; Friebe C; Janoschka T; Schmidt D; Wild A; Schubert US Macromol Rapid Commun; 2014 Aug; 35(15):1367-71. PubMed ID: 24861014 [TBL] [Abstract][Full Text] [Related]
5. The use of an emulsion templated microcellular poly(dicyclopentadiene-co-norbornene) membrane as a separator in lithium-ion batteries. Kovačič S; Kren H; Krajnc P; Koller S; Slugovc C Macromol Rapid Commun; 2013 Apr; 34(7):581-7. PubMed ID: 23495053 [TBL] [Abstract][Full Text] [Related]
6. Inverse Vulcanization of Sulfur using Natural Dienes as Sustainable Materials for Lithium-Sulfur Batteries. Gomez I; Leonet O; Blazquez JA; Mecerreyes D ChemSusChem; 2016 Dec; 9(24):3419-3425. PubMed ID: 27910220 [TBL] [Abstract][Full Text] [Related]
7. Benzoquinone- and Naphthoquinone-Bearing Polymers Synthesized by Ring-Opening Metathesis Polymerization as Cathode Materials for Lithium-Ion Batteries. Shi Y; Sun P; Yang J; Xu Y ChemSusChem; 2020 Jan; 13(2):334-340. PubMed ID: 31742909 [TBL] [Abstract][Full Text] [Related]
8. Elucidation of the redox behavior of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) at poly(3,4-ethylenedioxythiophene) (PEDOT)-modified electrodes and application of the DMcT-PEDOT composite cathodes to lithium/lithium ion batteries. Kiya Y; Hutchison GR; Henderson JC; Sarukawa T; Hatozaki O; Oyama N; Abruña HD Langmuir; 2006 Dec; 22(25):10554-63. PubMed ID: 17129030 [TBL] [Abstract][Full Text] [Related]
10. Precursor polymers for the carbon coating of Au@ZnO multipods for application as active material in lithium-ion batteries. Oschmann B; Tahir MN; Mueller F; Bresser D; Lieberwirth I; Tremel W; Passerini S; Zentel R Macromol Rapid Commun; 2015 Jun; 36(11):1075-82. PubMed ID: 25598387 [TBL] [Abstract][Full Text] [Related]
11. Interplay of Porosity, Wettability, and Redox Activity as Determining Factors for Lithium-Organic Electrochemical Energy Storage Using Biomolecules. Ilic IK; Perovic M; Liedel C ChemSusChem; 2020 Apr; 13(7):1856-1863. PubMed ID: 32026541 [TBL] [Abstract][Full Text] [Related]
12. Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries. Wu F; Chen J; Li L; Zhao T; Liu Z; Chen R ChemSusChem; 2013 Aug; 6(8):1438-44. PubMed ID: 23788469 [TBL] [Abstract][Full Text] [Related]
13. Recent Progress in Polymeric Carbonyl-Based Electrode Materials for Lithium and Sodium Ion Batteries. Amin K; Mao L; Wei Z Macromol Rapid Commun; 2019 Jan; 40(1):e1800565. PubMed ID: 30411834 [TBL] [Abstract][Full Text] [Related]
14. A High Voltage Olivine Cathode for Application in Lithium-Ion Batteries. Di Lecce D; Brescia R; Scarpellini A; Prato M; Hassoun J ChemSusChem; 2016 Jan; 9(2):223-30. PubMed ID: 26694202 [TBL] [Abstract][Full Text] [Related]
15. Single-ion polymer electrolyte membranes enable lithium-ion batteries with a broad operating temperature range. Cai W; Zhang Y; Li J; Sun Y; Cheng H ChemSusChem; 2014 Apr; 7(4):1063-7. PubMed ID: 24623577 [TBL] [Abstract][Full Text] [Related]
16. Dithiophenedione-containing polymers for battery application. Häupler B; Hagemann T; Friebe C; Wild A; Schubert US ACS Appl Mater Interfaces; 2015 Feb; 7(6):3473-9. PubMed ID: 25611256 [TBL] [Abstract][Full Text] [Related]
17. Stable Bifunctional Perylene Imide Radicals for High-Performance Organic-Lithium Redox-Flow Batteries. Li L; Gong HX; Chen DY; Lin MJ Chemistry; 2018 Sep; 24(50):13188-13196. PubMed ID: 29923233 [TBL] [Abstract][Full Text] [Related]
18. Dibenzo[a,e]Cyclooctatetraene-Functionalized Polymers as Potential Battery Electrode Materials. Desmaizieres G; Speer ME; Thiede I; Gaiser P; Perner V; Kolek M; Bieker P; Winter M; Esser B Macromol Rapid Commun; 2021 Sep; 42(18):e2000725. PubMed ID: 33660343 [TBL] [Abstract][Full Text] [Related]
19. iCVD Cyclic Polysiloxane and Polysilazane as Nanoscale Thin-Film Electrolyte: Synthesis and Properties. Chen N; Reeja-Jayan B; Liu A; Lau J; Dunn B; Gleason KK Macromol Rapid Commun; 2016 Mar; 37(5):446-52. PubMed ID: 26785633 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid. Forgie JC; El Khakani S; MacNeil DD; Rochefort D Phys Chem Chem Phys; 2013 May; 15(20):7713-21. PubMed ID: 23595224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]