These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 26937854)
1. Bioinspired Design and Computational Prediction of Iron Complexes with Pendant Amines for the Production of Methanol from CO2 and H2. Chen X; Yang X J Phys Chem Lett; 2016 Mar; 7(6):1035-41. PubMed ID: 26937854 [TBL] [Abstract][Full Text] [Related]
2. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase. Chen X; Jing Y; Yang X Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505 [TBL] [Abstract][Full Text] [Related]
3. Bio-inspired computational design of iron catalysts for the hydrogenation of carbon dioxide. Yang X Chem Commun (Camb); 2015 Aug; 51(66):13098-101. PubMed ID: 26186244 [TBL] [Abstract][Full Text] [Related]
4. Computational prediction of pentadentate iron and cobalt complexes as a mimic of mono-iron hydrogenase for the hydrogenation of carbon dioxide to methanol. Wang W; Qiu B; Yang X Dalton Trans; 2019 Jun; 48(23):8034-8038. PubMed ID: 31074752 [TBL] [Abstract][Full Text] [Related]
5. Heterolytic cleavage of hydrogen by an iron hydrogenase model: an Fe-H⋅⋅⋅H-N dihydrogen bond characterized by neutron diffraction. Liu T; Wang X; Hoffmann C; DuBois DL; Bullock RM Angew Chem Int Ed Engl; 2014 May; 53(21):5300-4. PubMed ID: 24757087 [TBL] [Abstract][Full Text] [Related]
6. Bio-mimetic self-assembled computationally designed catalysts of Mo and W for hydrogenation of CO Shiekh BA; Kaur D; Kumar S Phys Chem Chem Phys; 2019 Oct; 21(38):21370-21380. PubMed ID: 31531468 [TBL] [Abstract][Full Text] [Related]
7. A Functional Model of [Fe]-Hydrogenase. Xu T; Yin CJ; Wodrich MD; Mazza S; Schultz KM; Scopelliti R; Hu X J Am Chem Soc; 2016 Mar; 138(10):3270-3. PubMed ID: 26926708 [TBL] [Abstract][Full Text] [Related]
8. Hydrogenation of Carbon Dioxide to Methanol Catalyzed by Iron, Cobalt, and Manganese Cyclopentadienone Complexes: Mechanistic Insights and Computational Design. Ge H; Chen X; Yang X Chemistry; 2017 Jul; 23(37):8850-8856. PubMed ID: 28409860 [TBL] [Abstract][Full Text] [Related]
9. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays. Bullock RM; Helm ML Acc Chem Res; 2015 Jul; 48(7):2017-26. PubMed ID: 26079983 [TBL] [Abstract][Full Text] [Related]
10. Two pathways for electrocatalytic oxidation of hydrogen by a nickel bis(diphosphine) complex with pendant amines in the second coordination sphere. Yang JY; Smith SE; Liu T; Dougherty WG; Hoffert WA; Kassel WS; Rakowski DuBois M; DuBois DL; Bullock RM J Am Chem Soc; 2013 Jul; 135(26):9700-12. PubMed ID: 23631473 [TBL] [Abstract][Full Text] [Related]
11. Attempts To Catalyze the Electrochemical CO2-to-Methanol Conversion by Biomimetic 2e(-) + 2H(+) Transferring Molecules. Saveant JM; Tard C J Am Chem Soc; 2016 Jan; 138(3):1017-21. PubMed ID: 26717443 [TBL] [Abstract][Full Text] [Related]
12. C-H bond activation of methanol and ethanol by a high-spin Fe(IV)O biomimetic complex. Donald WA; McKenzie CJ; O'Hair RA Angew Chem Int Ed Engl; 2011 Aug; 50(36):8379-83. PubMed ID: 21717542 [No Abstract] [Full Text] [Related]
13. Catalytic activation of H2 under mild conditions by an [FeFe]-hydrogenase model via an active μ-hydride species. Wang N; Wang M; Wang Y; Zheng D; Han H; Ahlquist MS; Sun L J Am Chem Soc; 2013 Sep; 135(37):13688-91. PubMed ID: 24001095 [TBL] [Abstract][Full Text] [Related]
15. Diverse catalytic reactivity of a dearomatized PN Li H; Gonçalves TP; Zhao Q; Gong D; Lai Z; Wang Z; Zheng J; Huang KW Chem Commun (Camb); 2018 Oct; 54(81):11395-11398. PubMed ID: 30175825 [TBL] [Abstract][Full Text] [Related]
16. Hydrogenation of CO Yan X; Ge H; Yang X Inorg Chem; 2019 May; 58(9):5494-5502. PubMed ID: 31025565 [TBL] [Abstract][Full Text] [Related]
17. Effect of the components' interface on the synthesis of methanol over Cu/ZnO from CO2/H2: a microkinetic analysis based on DFT + U calculations. Tang QL; Zou WT; Huang RK; Wang Q; Duan XX Phys Chem Chem Phys; 2015 Mar; 17(11):7317-33. PubMed ID: 25697118 [TBL] [Abstract][Full Text] [Related]
18. Knölker's iron complex: an efficient in situ generated catalyst for reductive amination of alkyl aldehydes and amines. Pagnoux-Ozherelyeva A; Pannetier N; Mbaye MD; Gaillard S; Renaud JL Angew Chem Int Ed Engl; 2012 May; 51(20):4976-80. PubMed ID: 22489091 [TBL] [Abstract][Full Text] [Related]
19. Photocatalytic hydrogen production using models of the iron-iron hydrogenase active site dispersed in micellar solution. Orain C; Quentel F; Gloaguen F ChemSusChem; 2014 Feb; 7(2):638-43. PubMed ID: 24127363 [TBL] [Abstract][Full Text] [Related]
20. Reversible Hydride Transfer to N,N'-Diarylimidazolinium Cations from Hydrogen Catalyzed by Transition Metal Complexes Mimicking the Reaction of [Fe]-Hydrogenase. Hatazawa M; Yoshie N; Seino H Inorg Chem; 2017 Jul; 56(14):8087-8099. PubMed ID: 28654277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]