These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26938034)

  • 21. On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta: implications for indicators of abnormal flow.
    Gallo D; De Santis G; Negri F; Tresoldi D; Ponzini R; Massai D; Deriu MA; Segers P; Verhegghe B; Rizzo G; Morbiducci U
    Ann Biomed Eng; 2012 Mar; 40(3):729-41. PubMed ID: 22009313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous imaging of blood flow dynamics and vascular remodelling during development.
    Ghaffari S; Leask RL; Jones EA
    Development; 2015 Dec; 142(23):4158-67. PubMed ID: 26443647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flow patterns and preferred sites of atherosclerotic lesions in the human aorta - I. Aortic arch.
    Endo S; Goldsmith HL; Karino T
    Biorheology; 2014; 51(4-5):239-55. PubMed ID: 25281595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aortic arch morphogenesis and flow modeling in the chick embryo.
    Wang Y; Dur O; Patrick MJ; Tinney JP; Tobita K; Keller BB; Pekkan K
    Ann Biomed Eng; 2009 Jun; 37(6):1069-81. PubMed ID: 19337838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling.
    Feintuch A; Ruengsakulrach P; Lin A; Zhang J; Zhou YQ; Bishop J; Davidson L; Courtman D; Foster FS; Steinman DA; Henkelman RM; Ethier CR
    Am J Physiol Heart Circ Physiol; 2007 Feb; 292(2):H884-92. PubMed ID: 17012350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow?
    Moyle KR; Antiga L; Steinman DA
    J Biomech Eng; 2006 Jun; 128(3):371-9. PubMed ID: 16706586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics.
    Tse KM; Chang R; Lee HP; Lim SP; Venkatesh SK; Ho P
    Eur J Cardiothorac Surg; 2013 Apr; 43(4):829-38. PubMed ID: 22766960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined MR imaging and CFD simulation of flow in the human descending aorta.
    Wood NB; Weston SJ; Kilner PJ; Gosman AD; Firmin DN
    J Magn Reson Imaging; 2001 May; 13(5):699-713. PubMed ID: 11329191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differences in aortic arch geometry, hemodynamics, and plaque patterns between C57BL/6 and 129/SvEv mice.
    Zhu H; Zhang J; Shih J; Lopez-Bertoni F; Hagaman JR; Maeda N; Friedman MH
    J Biomech Eng; 2009 Dec; 131(12):121005. PubMed ID: 20524728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3-D numerical simulation of blood flow through models of the human aorta.
    Morris L; Delassus P; Callanan A; Walsh M; Wallis F; Grace P; McGloughlin T
    J Biomech Eng; 2005 Oct; 127(5):767-75. PubMed ID: 16248306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional numerical simulation of blood flow in the aortic arch during cardiopulmonary bypass.
    Tokuda Y; Song MH; Ueda Y; Usui A; Akita T; Yoneyama S; Maruyama S
    Eur J Cardiothorac Surg; 2008 Feb; 33(2):164-7. PubMed ID: 18160302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational fluid dynamics study of intra-arterial chemotherapy for oral cancer.
    Kitajima H; Oshima M; Iwai T; Ohhara Y; Yajima Y; Mitsudo K; Tohnai I
    Biomed Eng Online; 2017 May; 16(1):57. PubMed ID: 28506222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling of coarctation of aorta in human fetuses using 3D/4D fetal echocardiography and computational fluid dynamics.
    Chen Z; Zhou Y; Wang J; Liu X; Ge S; He Y
    Echocardiography; 2017 Dec; 34(12):1858-1866. PubMed ID: 28833523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluid-solid interaction in arteries incorporating the autoregulation concept in boundary conditions.
    Afkari D; Gabaldón F
    Comput Methods Biomech Biomed Engin; 2016; 19(9):985-1001. PubMed ID: 26404580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A model system for mapping vascular responses to complex hemodynamics at arterial bifurcations in vivo.
    Meng H; Swartz DD; Wang Z; Hoi Y; Kolega J; Metaxa EM; Szymanski MP; Yamamoto J; Sauvageau E; Levy EI
    Neurosurgery; 2006 Nov; 59(5):1094-100; discussion 1100-1. PubMed ID: 17143243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel periodic boundary condition for computational hemodynamics studies.
    Bahramian F; Mohammadi H
    Proc Inst Mech Eng H; 2014 Jul; 228(7):643-51. PubMed ID: 25015666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multimodal optical measurement in vitro of surface deformations and wall thickness of the pressurized aortic arch.
    Genovese K; Humphrey JD
    J Biomed Opt; 2015 Apr; 20(4):046005. PubMed ID: 25867620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.