These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 26938055)

  • 1. Morphological Variations of Explosive Residue Particles and Implications for Understanding Detonation Mechanisms.
    Abdul-Karim N; Blackman CS; Gill PP; Morgan RM; Matjacic L; Webb R; Ng WH
    Anal Chem; 2016 Apr; 88(7):3899-908. PubMed ID: 26938055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A morphological investigation of soot produced by the detonation of munitions.
    Pantea D; Brochu S; Thiboutot S; Ampleman G; Scholz G
    Chemosphere; 2006 Oct; 65(5):821-31. PubMed ID: 16674994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spatial distribution patterns of condensed phase post-blast explosive residues formed during detonation.
    Abdul-Karim N; Blackman CS; Gill PP; Karu K
    J Hazard Mater; 2016 Oct; 316():204-13. PubMed ID: 27236429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of explosive charge mass used for explosions on concrete surface for the forensic purpose.
    Bjelovuk ID; Jaramaz S; Mickovic D
    Sci Justice; 2012 Mar; 52(1):20-4. PubMed ID: 22325907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RDX and TNT residues from live-fire and blow-in-place detonations.
    Hewitt AD; Jenkins TF; Walsh ME; Walsh MR; Taylor S
    Chemosphere; 2005 Nov; 61(6):888-94. PubMed ID: 15964048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Desorption of nitramine and nitroaromatic explosive residues from soils detonated under controlled conditions.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA; Jaramillo AM; Trainor TP
    Environ Toxicol Chem; 2011 Feb; 30(2):345-53. PubMed ID: 21038362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explosive particle soil surface dispersion model for detonated military munitions.
    Hathaway JE; Rishel JP; Walsh ME; Walsh MR; Taylor S
    Environ Monit Assess; 2015 Jul; 187(7):415. PubMed ID: 26050065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laminar, cellular, transverse, and multiheaded pulsating detonations in condensed phase energetic materials from molecular dynamics simulations.
    Zhakhovsky VV; Budzevich MM; Landerville AC; Oleynik II; White CT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033312. PubMed ID: 25314569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the fate of nitroaromatic (TNT) and nitramine (RDX and HMX) explosives in fractured and pristine soils.
    Douglas TA; Walsh ME; McGrath CJ; Weiss CA
    J Environ Qual; 2009; 38(6):2285-94. PubMed ID: 19875785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of Composition B particles from blow-in-place detonations.
    Taylor S; Campbell E; Perovich L; Lever J; Pennington J
    Chemosphere; 2006 Nov; 65(8):1405-13. PubMed ID: 16750241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical and chemical evidence remaining after the explosion of large improvised bombs. Part 2: Firings of calcium ammonium nitrate/sugar mixtures.
    Cullum H; Lowe A; Marshall M; Hubbard P
    J Forensic Sci; 2000 Mar; 45(2):333-48. PubMed ID: 10782953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoplasmonic imaging of latent fingerprints with explosive RDX residues.
    Peng T; Qin W; Wang K; Shi J; Fan C; Li D
    Anal Chem; 2015 Sep; 87(18):9403-7. PubMed ID: 26292147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The spatial distribution of postblast RDX residue: forensic implications.
    Abdul-Karim N; Morgan R; Binions R; Temple T; Harrison K
    J Forensic Sci; 2013 Mar; 58(2):365-71. PubMed ID: 23278671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perchlorate contamination from the detonation of insensitive high-explosive rounds.
    Walsh MR; Walsh ME; Ramsey CA; Brochu S; Thiboutot S; Ampleman G
    J Hazard Mater; 2013 Nov; 262():228-33. PubMed ID: 24035798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TNT particle size distributions from detonated 155-mm howitzer rounds.
    Taylor S; Hewitt A; Lever J; Hayes C; Perovich L; Thorne P; Daghlian C
    Chemosphere; 2004 Apr; 55(3):357-67. PubMed ID: 14987934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution kinetics of sub-millimeter Composition B detonation residues: role of particle size and particle wetting.
    Fuller ME; Schaefer CE; Andaya C; Lazouskaya V; Fallis S; Wang C; Jin Y
    Chemosphere; 2012 Jul; 88(5):591-7. PubMed ID: 22483856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of particulate Composition B during simulated weathering of larger detonation residues.
    Fuller ME; Schaefer CE; Andaya C; Fallis S
    J Hazard Mater; 2015; 283():1-6. PubMed ID: 25262478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progressing the analysis of Improvised Explosive Devices: Comparative study for trace detection of explosive residues in handprints by Raman spectroscopy and liquid chromatography.
    Zapata F; de la Ossa MÁF; Gilchrist E; Barron L; García-Ruiz C
    Talanta; 2016 Dec; 161():219-227. PubMed ID: 27769399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple correlation for predicting detonation velocity of ideal and non-ideal explosives.
    Keshavarz MH
    J Hazard Mater; 2009 Jul; 166(2-3):762-9. PubMed ID: 19135789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sampling of explosive residues: The use of a gelatine-based medium for the recovery of ammonium nitrate.
    Amaral MA; Yasin S; Gibson AP; Morgan RM
    Sci Justice; 2020 Nov; 60(6):531-537. PubMed ID: 33077036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.