These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26938217)

  • 41. In vivo treatment with varespladib, a phospholipase A
    Silva-Carvalho R; Gaspar MZ; Quadros LHB; Lobo LGG; Rogério LM; Santos NTS; Zerbinatti MC; Santarém CL; Silva EO; Gerez JR; Silva NJ; Lomonte B; Rowan EG; Floriano RS
    Toxicol Lett; 2022 Mar; 356():54-63. PubMed ID: 34774704
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cross neutralisation of Southeast Asian cobra and krait venoms by Indian polyvalent antivenoms.
    Leong PK; Tan NH; Fung SY; Sim SM
    Trans R Soc Trop Med Hyg; 2012 Dec; 106(12):731-7. PubMed ID: 23062608
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bites by coral snakes (Micrurus spp.) in Campinas, State of São Paulo, Southeastern Brazil.
    Bucaretchi F; Hyslop S; Vieira RJ; Toledo AS; Madureira PR; de Capitani EM
    Rev Inst Med Trop Sao Paulo; 2006; 48(3):141-5. PubMed ID: 16847503
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recovery from the Neuroparalysis Caused by the
    Stazi M; Fabris F; Fernández J; D'Este G; Rigoni M; Megighian A; Gutiérrez JM; Lomonte B; Montecucco C
    Toxins (Basel); 2022 Aug; 14(8):. PubMed ID: 36006193
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Envenoming by coral snakes (Micrurus) in Argentina, during the period between 1979-2003.
    de Roodt AR; De Titto E; Dolab JA; Chippaux JP
    Rev Inst Med Trop Sao Paulo; 2013; 55(1):13-8. PubMed ID: 23328720
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antivenom cross-neutralization of the venoms of Hydrophis schistosus and Hydrophis curtus, two common sea snakes in Malaysian waters.
    Tan CH; Tan NH; Tan KY; Kwong KO
    Toxins (Basel); 2015 Feb; 7(2):572-81. PubMed ID: 25690691
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The humoral immune response induced by snake venom toxins.
    da Silva WD; Tambourgi DV
    Inflamm Allergy Drug Targets; 2011 Oct; 10(5):343-57. PubMed ID: 21824082
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of venom toxin-specific antibodies by DNA immunisation: rationale and strategies to improve therapy of viper envenoming.
    Harrison RA
    Vaccine; 2004 Apr; 22(13-14):1648-55. PubMed ID: 15068847
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neostigmine in the treatment of snake accidents caused by Micrurus frontalis: report of two cases (1).
    Vital Brazil O; Vieira RJ
    Rev Inst Med Trop Sao Paulo; 1996; 38(1):61-7. PubMed ID: 8762642
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a sensitive enzyme immunoassay for measuring taipan venom in serum.
    Kulawickrama S; O'Leary MA; Hodgson WC; Brown SG; Jacoby T; Davern K; Isbister GK
    Toxicon; 2010 Jul; 55(8):1510-8. PubMed ID: 20223258
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional Application of Snake Venom Proteomics in In Vivo Antivenom Assessment.
    Tan CH; Tan KY
    Methods Mol Biol; 2019; 1871():153-158. PubMed ID: 30276739
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Immune response towards snake venoms.
    León G; Sánchez L; Hernández A; Villalta M; Herrera M; Segura A; Estrada R; Gutiérrez JM
    Inflamm Allergy Drug Targets; 2011 Oct; 10(5):381-98. PubMed ID: 21824081
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Snake venomics and antivenomics: Proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming.
    Gutiérrez JM; Lomonte B; León G; Alape-Girón A; Flores-Díaz M; Sanz L; Angulo Y; Calvete JJ
    J Proteomics; 2009 Mar; 72(2):165-82. PubMed ID: 19344652
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heterologous Expression and Immunogenic Potential of the Most Abundant Phospholipase A
    Romero-Giraldo LE; Pulido S; Berrío MA; Flórez MF; Rey-Suárez P; Nuñez V; Pereañez JA
    Toxins (Basel); 2022 Nov; 14(12):. PubMed ID: 36548722
    [No Abstract]   [Full Text] [Related]  

  • 55. Use of immunoturbidimetry to detect venom-antivenom binding using snake venoms.
    O'Leary MA; Maduwage K; Isbister GK
    J Pharmacol Toxicol Methods; 2013; 67(3):177-81. PubMed ID: 23416032
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neutralization of coral snake Micrurus nigrocinctus venom by a monovalent antivenom.
    Gutiérrez JM; Rojas G; Pérez A; Argüello I; Lomonte B
    Braz J Med Biol Res; 1991; 24(7):701-10. PubMed ID: 1823287
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proteomic and biological characterization of the venom of the redtail coral snake, Micrurus mipartitus (Elapidae), from Colombia and Costa Rica.
    Rey-Suárez P; Núñez V; Gutiérrez JM; Lomonte B
    J Proteomics; 2011 Dec; 75(2):655-67. PubMed ID: 21963438
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficacy of antivenom against the procoagulant effect of Australian brown snake (Pseudonaja sp.) venom: in vivo and in vitro studies.
    Isbister GK; O'Leary MA; Schneider JJ; Brown SG; Currie BJ;
    Toxicon; 2007 Jan; 49(1):57-67. PubMed ID: 17055016
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches.
    Liu CC; You CH; Wang PJ; Yu JS; Huang GJ; Liu CH; Hsieh WC; Lin CC
    PLoS Negl Trop Dis; 2017 Dec; 11(12):e0006138. PubMed ID: 29244815
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cloning and characterization of an alpha-neurotoxin-type protein specific for the coral snake Micrurus corallinus.
    Silveira de Oliveira J; Rossan de Brandão Prieto da Silva A; Soares MB; Stephano MA; de Oliveira Dias W; Raw I; Ho PL
    Biochem Biophys Res Commun; 2000 Jan; 267(3):887-91. PubMed ID: 10673386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.