These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 26938310)

  • 1. Triple Helix Formation in a Topologically Controlled DNA Nanosystem.
    Yamagata Y; Emura T; Hidaka K; Sugiyama H; Endo M
    Chemistry; 2016 Apr; 22(16):5494-8. PubMed ID: 26938310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Observation of the Double-Stranded DNA Formation through Metal Ion-Mediated Base Pairing in the Nanoscale Structure.
    Xing X; Feng Y; Yu Z; Hidaka K; Liu F; Ono A; Sugiyama H; Endo M
    Chemistry; 2019 Jan; 25(6):1446-1450. PubMed ID: 30479034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Molecule Manipulation of the Duplex Formation and Dissociation at the G-Quadruplex/i-Motif Site in the DNA Nanostructure.
    Endo M; Xing X; Zhou X; Emura T; Hidaka K; Tuesuwan B; Sugiyama H
    ACS Nano; 2015 Oct; 9(10):9922-9. PubMed ID: 26371377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triplex-forming oligonucleotides: a third strand for DNA nanotechnology.
    Chandrasekaran AR; Rusling DA
    Nucleic Acids Res; 2018 Feb; 46(3):1021-1037. PubMed ID: 29228337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative specificities in binding of Watson-Crick base pairs by third strand residues in a DNA pyrimidine triplex motif.
    Fossella JA; Kim YJ; Shih H; Richards EG; Fresco JR
    Nucleic Acids Res; 1993 Sep; 21(19):4511-5. PubMed ID: 8233785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular model for RecA-promoted strand exchange via parallel triple-stranded helices.
    Bertucat G; Lavery R; Prévost C
    Biophys J; 1999 Sep; 77(3):1562-76. PubMed ID: 10465767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of the sequence-specific third-strand recognition of four Watson-Crick base pairs in a pyrimidine triple-helix motif: T.AT, C.GC, T.CG, and G.TA.
    Yoon K; Hobbs CA; Koch J; Sardaro M; Kutny R; Weis AL
    Proc Natl Acad Sci U S A; 1992 May; 89(9):3840-4. PubMed ID: 1570302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural constraints regulating triple helix formation by A-tracts.
    Sen A; Gräslund A
    Biophys Chem; 2000 Dec; 88(1-3):69-80. PubMed ID: 11152277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution structure of the calicheamicin gamma 1I-DNA complex.
    Kumar RA; Ikemoto N; Patel DJ
    J Mol Biol; 1997 Jan; 265(2):187-201. PubMed ID: 9020982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule observations of RNA-RNA kissing interactions in a DNA nanostructure.
    Takeuchi Y; Endo M; Suzuki Y; Hidaka K; Durand G; Dausse E; Toulmé JJ; Sugiyama H
    Biomater Sci; 2016 Jan; 4(1):130-5. PubMed ID: 26438892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Observation of the Formation and Dissociation of Double-Stranded DNA Containing G-Quadruplex/i-Motif Sequences in the DNA Origami Frame Using High-Speed AFM.
    Endo M; Xing X; Sugiyama H
    Methods Mol Biol; 2019; 2035():299-308. PubMed ID: 31444757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Molecule Observation of the Photoregulated Conformational Dynamics of DNA Origami Nanoscissors.
    Willner EM; Kamada Y; Suzuki Y; Emura T; Hidaka K; Dietz H; Sugiyama H; Endo M
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15324-15328. PubMed ID: 29044955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and stability of a Janus-Wedge type of DNA triplex.
    Chen D; Meena M; Sharma SK; McLaughlin LW
    J Am Chem Soc; 2004 Jan; 126(1):70-1. PubMed ID: 14709064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity.
    Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL
    J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Molecule Visualization of the Activity of a Zn(2+)-Dependent DNAzyme.
    Endo M; Takeuchi Y; Suzuki Y; Emura T; Hidaka K; Wang F; Willner I; Sugiyama H
    Angew Chem Int Ed Engl; 2015 Sep; 54(36):10550-4. PubMed ID: 26195344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of 5-methylcytosine on the structure and stability of DNA. Formation of triple-stranded concatenamers by overlapping oligonucleotides.
    Xodo LE; Alunni-Fabbroni M; Manzini G
    J Biomol Struct Dyn; 1994 Feb; 11(4):703-20. PubMed ID: 8204209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance structural studies of intramolecular purine.purine.pyrimidine DNA triplexes in solution. Base triple pairing alignments and strand direction.
    Radhakrishnan I; de los Santos C; Patel DJ
    J Mol Biol; 1991 Oct; 221(4):1403-18. PubMed ID: 1942059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.