These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26938312)

  • 21. Large Scale Flow-Mediated Formation and Potential Applications of Surface Nanodroplets.
    Yu H; Peng S; Lei L; Zhang J; Greaves TL; Zhang X
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22679-87. PubMed ID: 27500306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shape of picoliter droplets on chemically striped patterned substrates.
    Jansen HP; Sotthewes K; Ganser C; Zandvliet HJ; Teichert C; Kooij ES
    Langmuir; 2014 Oct; 30(39):11574-81. PubMed ID: 25198584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mixed mode of dissolving immersed nanodroplets at a solid-water interface.
    Zhang X; Wang J; Bao L; Dietrich E; van der Veen RC; Peng S; Friend J; Zandvliet HJ; Yeo L; Lohse D
    Soft Matter; 2015 Mar; 11(10):1889-900. PubMed ID: 25605229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental and theoretical investigations of evaporation of sessile water droplet on hydrophobic surfaces.
    Yu YS; Wang Z; Zhao YP
    J Colloid Interface Sci; 2012 Jan; 365(1):254-9. PubMed ID: 21962433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Underwater Curvature-Driven Transport between Oil Droplets on Patterned Substrates.
    Yang X; Breedveld V; Choi WT; Liu X; Song J; Hess DW
    ACS Appl Mater Interfaces; 2018 May; 10(17):15258-15269. PubMed ID: 29630334
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of Femtoliter Liquid on a Microlens: A Way to Flexible Dual-Microlens Arrays.
    Bao L; Pinchasik BE; Lei L; Xu Q; Hao H; Wang X; Zhang X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27386-27393. PubMed ID: 31268287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystallization of Femtoliter Surface Droplet Arrays Revealed by Synchrotron Small-Angle X-ray Scattering.
    Dyett B; Zychowski L; Bao L; Meikle TG; Peng S; Yu H; Li M; Strachan J; Kirby N; Logan A; Conn CE; Zhang X
    Langmuir; 2018 Aug; 34(32):9470-9476. PubMed ID: 30021434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of the liquid layer thickness on the dissolution of immersed surface droplets.
    Xie Q; Harting J
    Soft Matter; 2019 Aug; 15(32):6461-6468. PubMed ID: 31292583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Collective interactions in the nucleation and growth of surface droplets.
    Xu C; Yu H; Peng S; Lu Z; Lei L; Lohse D; Zhang X
    Soft Matter; 2017 Feb; 13(5):937-944. PubMed ID: 28009910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of surface nanodroplets of viscous liquids by solvent exchange.
    Dyett B; Yu H; Zhang X
    Eur Phys J E Soft Matter; 2017 Mar; 40(3):26. PubMed ID: 28275962
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamics of a Water Droplet over a Sessile Oil Droplet: Compound Droplets Satisfying a Neumann Condition.
    Iqbal R; Dhiman S; Sen AK; Shen AQ
    Langmuir; 2017 Jun; 33(23):5713-5723. PubMed ID: 28499091
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces.
    Dash S; Chandramohan A; Weibel JA; Garimella SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062407. PubMed ID: 25615112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A theory for the morphological dependence of wetting on a physically patterned solid surface.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2012 Oct; 28(40):14227-37. PubMed ID: 22998115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contact angle dependence of the resonant frequency of sessile water droplets.
    Sharp JS; Farmer DJ; Kelly J
    Langmuir; 2011 Aug; 27(15):9367-71. PubMed ID: 21682292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaporation of droplets on strongly hydrophobic substrates.
    Stauber JM; Wilson SK; Duffy BR; Sefiane K
    Langmuir; 2015 Mar; 31(12):3653-60. PubMed ID: 25747121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental and Theoretical Investigation of Droplet Evaporation on Heated Hydrophilic and Hydrophobic Surfaces.
    Kadhim MA; Kapur N; Summers JL; Thompson H
    Langmuir; 2019 May; 35(19):6256-6266. PubMed ID: 30990692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stick-Jump (SJ) Evaporation of Strongly Pinned Nanoliter Volume Sessile Water Droplets on Quick Drying, Micropatterned Surfaces.
    Debuisson D; Merlen A; Senez V; Arscott S
    Langmuir; 2016 Mar; 32(11):2679-86. PubMed ID: 26950673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis.
    Dash S; Garimella SV
    Langmuir; 2013 Aug; 29(34):10785-95. PubMed ID: 23952149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of droplet wetting mode transitions on grooved surfaces: forward flux sampling.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2014 Dec; 30(51):15442-50. PubMed ID: 25470510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.