These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26938468)

  • 1. Wireless Cortical Brain-Machine Interface for Whole-Body Navigation in Primates.
    Rajangam S; Tseng PH; Yin A; Lehew G; Schwarz D; Lebedev MA; Nicolelis MA
    Sci Rep; 2016 Mar; 6():22170. PubMed ID: 26938468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Place Cell-Like Activity in the Primary Sensorimotor and Premotor Cortex During Monkey Whole-Body Navigation.
    Yin A; Tseng PH; Rajangam S; Lebedev MA; Nicolelis MAL
    Sci Rep; 2018 Jun; 8(1):9184. PubMed ID: 29907789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interbrain cortical synchronization encodes multiple aspects of social interactions in monkey pairs.
    Tseng PH; Rajangam S; Lehew G; Lebedev MA; Nicolelis MAL
    Sci Rep; 2018 Mar; 8(1):4699. PubMed ID: 29599529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subject-specific modulation of local field potential spectral power during brain-machine interface control in primates.
    So K; Dangi S; Orsborn AL; Gastpar MC; Carmena JM
    J Neural Eng; 2014 Apr; 11(2):026002. PubMed ID: 24503623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing a linear algorithm for real-time robotic control using chronic cortical ensemble recordings in monkeys.
    Wessberg J; Nicolelis MA
    J Cogn Neurosci; 2004; 16(6):1022-35. PubMed ID: 15298789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-machine interfaces: assistive, thought-controlled devices.
    Niemeyer JE
    Lab Anim (NY); 2016 Sep; 45(10):359-61. PubMed ID: 27654684
    [No Abstract]   [Full Text] [Related]  

  • 7. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates.
    Wessberg J; Stambaugh CR; Kralik JD; Beck PD; Laubach M; Chapin JK; Kim J; Biggs SJ; Srinivasan MA; Nicolelis MA
    Nature; 2000 Nov; 408(6810):361-5. PubMed ID: 11099043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A freely-moving monkey treadmill model.
    Foster JD; Nuyujukian P; Freifeld O; Gao H; Walker R; I Ryu S; H Meng T; Murmann B; J Black M; Shenoy KV
    J Neural Eng; 2014 Aug; 11(4):046020. PubMed ID: 24995476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain-Computer Interface application: auditory serial interface to control a two-class motor-imagery-based wheelchair.
    Ron-Angevin R; Velasco-Álvarez F; Fernández-Rodríguez Á; Díaz-Estrella A; Blanca-Mena MJ; Vizcaíno-Martín FJ
    J Neuroeng Rehabil; 2017 May; 14(1):49. PubMed ID: 28558741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long term, stable brain machine interface performance using local field potentials and multiunit spikes.
    Flint RD; Wright ZA; Scheid MR; Slutzky MW
    J Neural Eng; 2013 Oct; 10(5):056005. PubMed ID: 23918061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding Movements from Cortical Ensemble Activity Using a Long Short-Term Memory Recurrent Network.
    Tseng PH; Urpi NA; Lebedev M; Nicolelis M
    Neural Comput; 2019 Jun; 31(6):1085-1113. PubMed ID: 30979355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-machine interface cursor position only weakly affects monkey and human motor cortical activity in the absence of arm movements.
    Stavisky SD; Kao JC; Nuyujukian P; Pandarinath C; Blabe C; Ryu SI; Hochberg LR; Henderson JM; Shenoy KV
    Sci Rep; 2018 Nov; 8(1):16357. PubMed ID: 30397281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical ensemble adaptation to represent velocity of an artificial actuator controlled by a brain-machine interface.
    Lebedev MA; Carmena JM; O'Doherty JE; Zacksenhouse M; Henriquez CS; Principe JC; Nicolelis MA
    J Neurosci; 2005 May; 25(19):4681-93. PubMed ID: 15888644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autonomous assistance navigation for robotic wheelchairs in confined spaces.
    Cheein FA; Carelli R; De la Cruz C; Muller S; Bastos Filho TF
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():503-6. PubMed ID: 21095654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface.
    Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M
    Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-machine interface for eye movements.
    Graf AB; Andersen RA
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17630-5. PubMed ID: 25422454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wireless recording from unrestrained monkeys reveals motor goal encoding beyond immediate reach in frontoparietal cortex.
    Berger M; Agha NS; Gail A
    Elife; 2020 May; 9():. PubMed ID: 32364495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes.
    Stavisky SD; Kao JC; Nuyujukian P; Ryu SI; Shenoy KV
    J Neural Eng; 2015 Jun; 12(3):036009. PubMed ID: 25946198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Causal network in a deafferented non-human primate brain.
    Balasubramanian K; Takahashi K; Hatsopoulos NG
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():59-62. PubMed ID: 26736200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.