These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 26938497)
1. Temperature change affected groundwater quality in a confined marine aquifer during long-term heating and cooling. Saito T; Hamamoto S; Ueki T; Ohkubo S; Moldrup P; Kawamoto K; Komatsu T Water Res; 2016 May; 94():120-127. PubMed ID: 26938497 [TBL] [Abstract][Full Text] [Related]
2. Effect of urban aquifer exploitation on subsurface temperature and water quality. Abe H; Tang C; Kondoh A Ground Water; 2014 Sep; 52 Suppl 1():186-94. PubMed ID: 24393085 [TBL] [Abstract][Full Text] [Related]
3. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Bonte M; van Breukelen BM; Stuyfzand PJ Water Res; 2013 Sep; 47(14):5088-100. PubMed ID: 23870436 [TBL] [Abstract][Full Text] [Related]
4. Long-term evolution of anthropogenic heat fluxes into a subsurface urban heat island. Menberg K; Blum P; Schaffitel A; Bayer P Environ Sci Technol; 2013 Sep; 47(17):9747-55. PubMed ID: 23895264 [TBL] [Abstract][Full Text] [Related]
5. Thermal influences on groundwater in urban environments - A multivariate statistical analysis of the subsurface heat island effect in Munich. Böttcher F; Zosseder K Sci Total Environ; 2022 Mar; 810():152193. PubMed ID: 34890669 [TBL] [Abstract][Full Text] [Related]
6. Is thermal use of groundwater a pollution? Blum P; Menberg K; Koch F; Benz SA; Tissen C; Hemmerle H; Bayer P J Contam Hydrol; 2021 May; 239():103791. PubMed ID: 33799016 [TBL] [Abstract][Full Text] [Related]
7. Case Studies of Geothermal System Response to Perturbations in Groundwater Flow and Thermal Regimes. Abesser C; Schincariol RA; Raymond J; García-Gil A; Drysdale R; Piatek A; Giordano N; Jaziri N; Molson J Ground Water; 2023 Mar; 61(2):255-273. PubMed ID: 33586172 [TBL] [Abstract][Full Text] [Related]
8. The thermal consequences of river-level variations in an urban groundwater body highly affected by groundwater heat pumps. García-Gil A; Vázquez-Suñe E; Schneider EG; Sánchez-Navarro JÁ; Mateo-Lázaro J Sci Total Environ; 2014 Jul; 485-486():575-587. PubMed ID: 24747249 [TBL] [Abstract][Full Text] [Related]
9. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers. Wildemeersch S; Jamin P; Orban P; Hermans T; Klepikova M; Nguyen F; Brouyère S; Dassargues A J Contam Hydrol; 2014 Nov; 169():90-99. PubMed ID: 25201639 [TBL] [Abstract][Full Text] [Related]
10. Groundwater heat pump feasibility in shallow urban aquifers: Experience from Cardiff, UK. Boon DP; Farr GJ; Abesser C; Patton AM; James DR; Schofield DI; Tucker DG Sci Total Environ; 2019 Dec; 697():133847. PubMed ID: 31491627 [TBL] [Abstract][Full Text] [Related]
11. The subsurface urban heat island in Milan (Italy) - A modeling approach covering present and future thermal effects on groundwater regimes. Previati A; Epting J; Crosta GB Sci Total Environ; 2022 Mar; 810():152119. PubMed ID: 34871675 [TBL] [Abstract][Full Text] [Related]
12. Shallow subsurface heat recycling is a sustainable global space heating alternative. Benz SA; Menberg K; Bayer P; Kurylyk BL Nat Commun; 2022 Jul; 13(1):3962. PubMed ID: 35803956 [TBL] [Abstract][Full Text] [Related]
13. Thermal intensification of microbial Fe(II)/Fe(III) redox cycling in a pristine shallow sand aquifer on the Canadian Shield. Shirokova VL; Enright AML; Kennedy CB; Ferris FG Water Res; 2016 Dec; 106():604-612. PubMed ID: 27780075 [TBL] [Abstract][Full Text] [Related]
14. Groundwater Microbiology of an Urban Open-Loop Ground Source Heat Pump with High Methane. J Barnett M; J Farr G; Shen J; Gregory S Ground Water; 2023 Mar; 61(2):274-287. PubMed ID: 36645287 [TBL] [Abstract][Full Text] [Related]
15. Migration of As, and (3)H/(3)He ages, in groundwater from West Bengal: Implications for monitoring. McArthur JM; Banerjee DM; Sengupta S; Ravenscroft P; Klump S; Sarkar A; Disch B; Kipfer R Water Res; 2010 Jul; 44(14):4171-85. PubMed ID: 20542311 [TBL] [Abstract][Full Text] [Related]
16. Sustainable intensive thermal use of the shallow subsurface-a critical view on the status quo. Vienken T; Schelenz S; Rink K; Dietrich P Ground Water; 2015; 53(3):356-61. PubMed ID: 24826995 [TBL] [Abstract][Full Text] [Related]
17. Temperature influence on mobilisation and (re)fixation of trace elements and heavy metals in column tests with aquifer sediments from 10 to 70 °C. Lüders K; Dahmke A; Fiedler M; Köber R Water Res; 2020 Feb; 169():115266. PubMed ID: 31734391 [TBL] [Abstract][Full Text] [Related]
18. Subsurface absorption of anthropogenic warming of the land surface: the case of the world's largest brickworks (Stewartby, Bedfordshire, UK). Westaway R; Scotney PM; Younger PL; Boyce AJ Sci Total Environ; 2015 Mar; 508():585-603. PubMed ID: 25481718 [TBL] [Abstract][Full Text] [Related]
19. Nitrate leaching to shallow groundwater systems from agricultural fields with different management practices. Nila Rekha P; Kanwar RS; Nayak AK; Hoang CK; Pederson CH J Environ Monit; 2011 Sep; 13(9):2550-8. PubMed ID: 21785805 [TBL] [Abstract][Full Text] [Related]
20. Applicability of ground source heat pumps as a bioremediation-enhancing technology for monoaromatic hydrocarbon contaminants. Roohidehkordi I; Krol MM Sci Total Environ; 2021 Jul; 778():146235. PubMed ID: 33721653 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]