These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26938568)

  • 1. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water.
    Song L; Zhu B; Gray S; Duke M; Muthukumaran S
    Membranes (Basel); 2016 Mar; 6(1):. PubMed ID: 26938568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV/TiO₂ photocatalytic oxidation of recalcitrant organic matter: effect of salinity and pH.
    Muthukumaran S; Song L; Zhu B; Myat D; Chen JY; Gray S; Duke M
    Water Sci Technol; 2014; 70(3):437-43. PubMed ID: 25098872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of Hybrid Photocatalytic-Ceramic Membrane System for the Treatment of Secondary Effluent.
    Song L; Zhu B; Gray S; Duke M; Muthukumaran S
    Membranes (Basel); 2017 Mar; 7(2):. PubMed ID: 28350320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid photocatalysis/membrane treatment for surface waters containing low concentrations of natural organic matters.
    Le-Clech P; Lee EK; Chen V
    Water Res; 2006 Jan; 40(2):323-30. PubMed ID: 16378634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performing a microfiltration integrated with photocatalysis using an Ag-TiO(2)/HAP/Al(2)O(3) composite membrane for water treatment: Evaluating effectiveness for humic acid removal and anti-fouling properties.
    Ma N; Zhang Y; Quan X; Fan X; Zhao H
    Water Res; 2010 Dec; 44(20):6104-14. PubMed ID: 20650505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of ozonation and biological activated carbon filtration on ceramic membrane fouling.
    Ibn Abdul Hamid K; Sanciolo P; Gray S; Duke M; Muthukumaran S
    Water Res; 2017 Dec; 126():308-318. PubMed ID: 28965033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of an integrated photocatalysis/hollow fiber microfiltration system for the removal of trichloroethylene in water.
    Choo KH; Chang DI; Park KW; Kim MH
    J Hazard Mater; 2008 Mar; 152(1):183-90. PubMed ID: 17686580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From micro to macro-contaminants: The impact of low-energy titanium dioxide photocatalysis followed by filtration on the mitigation of drinking water organics.
    Mayer BK; Johnson C; Yang Y; Wellenstein N; Maher E; McNamara PJ
    Chemosphere; 2019 Feb; 217():111-121. PubMed ID: 30414543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of dyes and salts from highly concentrated (dye and salt) mixed water using nano-filtration ceramic membranes.
    Mamun Kabir SM; Mahmud H; Schӧenberger H
    Heliyon; 2022 Nov; 8(11):e11543. PubMed ID: 36387485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hybrid process TiO(2)/PAC: performance of membrane filtration.
    Ziegmann M; Saravia F; Torres PA; Frimmel FH
    Water Sci Technol; 2010; 62(5):1205-12. PubMed ID: 20818066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodecomposition of humic acid and natural organic matter in swamp water using a TiO(2)-coated ceramic foam filter: potential for the formation of disinfection byproducts.
    Mori M; Sugita T; Mase A; Funatogawa T; Kikuchi M; Aizawa K; Kato S; Saito Y; Ito T; Itabashi H
    Chemosphere; 2013 Jan; 90(4):1359-65. PubMed ID: 22921646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of natural organic matter by ultrafiltration with TiO2-coated membrane under UV irradiation.
    Syafei AD; Lin CF; Wu CH
    J Colloid Interface Sci; 2008 Jul; 323(1):112-9. PubMed ID: 18440014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A sono-photocatalyst for humic acid removal from water: Operational parameters, kinetics and mechanism.
    Geng N; Chen W; Xu H; Ding M; Liu Z; Shen Z
    Ultrason Sonochem; 2019 Oct; 57():242-252. PubMed ID: 31078395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a hybrid system comprising carbon-doped TiO2 film and a ceramic media-packed biofilter for enhanced removal of gaseous styrene.
    Kim MS; Liu G; Cho HK; Kim BW
    J Hazard Mater; 2011 Jun; 190(1-3):537-43. PubMed ID: 21501925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the Interaction between Aquatic Humic Substances and Algal Organic Matter on the Fouling of a Ceramic Microfiltration Membrane.
    Zhang X; Fan L; Roddick FA
    Membranes (Basel); 2018 Feb; 8(1):. PubMed ID: 29389873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO(2) as photocatalyst.
    Uğurlu M; Karaoğlu MH
    Environ Sci Pollut Res Int; 2009 May; 16(3):265-73. PubMed ID: 18839234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic and kinetic study of a hybrid detoxification process with zero liquid discharge system in an industrial wastewater treatment.
    Abid MF; Abdulrahman AA; Hamza NH
    J Environ Health Sci Eng; 2014; 12(1):145. PubMed ID: 25648793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of humic acids in surface water: effects of divalent cations, pH, and filtration.
    Rodrigues A; Brito A; Janknecht P; Proença MF; Nogueira R
    J Environ Monit; 2009 Feb; 11(2):377-82. PubMed ID: 19212596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sustainable solution for removal of glutaraldehyde in saline water with visible light photocatalysis.
    Hong S; Ratpukdi T; Sungthong B; Sivaguru J; Khan E
    Chemosphere; 2019 Apr; 220():1083-1090. PubMed ID: 33395795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.