These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26938982)

  • 1. Comparison Study on the Stability of Copper Nanowires and Their Oxidation Kinetics in Gas and Liquid.
    Xu L; Yang Y; Hu ZW; Yu SH
    ACS Nano; 2016 Mar; 10(3):3823-34. PubMed ID: 26938982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancements in Copper Nanowires: Synthesis, Purification, Assemblies, Surface Modification, and Applications.
    Zhao S; Han F; Li J; Meng X; Huang W; Cao D; Zhang G; Sun R; Wong CP
    Small; 2018 Jun; 14(26):e1800047. PubMed ID: 29707894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of temperature on the oxidation of Cu nanowires and development of an easy to produce, oxidation-resistant transparent conducting electrode using a PEDOT:PSS coating.
    Mardiansyah D; Badloe T; Triyana K; Mehmood MQ; Raeis-Hosseini N; Lee Y; Sabarman H; Kim K; Rho J
    Sci Rep; 2018 Jul; 8(1):10639. PubMed ID: 30006611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base.
    Alia SM; Pivovar BS; Yan Y
    J Am Chem Soc; 2013 Sep; 135(36):13473-8. PubMed ID: 23952885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical and rheological percolation of polymer nanocomposites prepared with functionalized copper nanowires.
    Gelves GA; Lin B; Sundararaj U; Haber JA
    Nanotechnology; 2008 May; 19(21):215712. PubMed ID: 21730591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-Scale and Galvanic Replacement Free Synthesis of Cu@Ag Core-Shell Nanowires for Flexible Electronics.
    Zhang B; Li W; Jiu J; Yang Y; Jing J; Suganuma K; Li CF
    Inorg Chem; 2019 Mar; 58(5):3374-3381. PubMed ID: 30789711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.
    Shi W; Chopra N
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the Surface Oxidation of Cu Nanowires Improves Their Catalytic Selectivity and Stability toward C
    Lyu Z; Zhu S; Xie M; Zhang Y; Chen Z; Chen R; Tian M; Chi M; Shao M; Xia Y
    Angew Chem Int Ed Engl; 2021 Jan; 60(4):1909-1915. PubMed ID: 33006809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Electrochemical Response of Single Crystalline Copper Nanowires to Atmospheric Air and Aqueous Solution.
    Zhang B; Chen B; Wu J; Hao S; Yang G; Cao X; Jing L; Zhu M; Tsang SH; Teo EH; Huang Y
    Small; 2017 Mar; 13(10):. PubMed ID: 28026122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersibility, stabilization, and chemical stability of ultrathin tellurium nanowires in acetone: morphology change, crystallization, and transformation into TeO2 in different solvents.
    Lan WJ; Yu SH; Qian HS; Wan Y
    Langmuir; 2007 Mar; 23(6):3409-17. PubMed ID: 17295530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced photolysis stability of Cu
    Huang CL; Weng WL; Huang YS; Liao CN
    Nanoscale; 2019 Aug; 11(29):13709-13713. PubMed ID: 31194206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Processing and Electrical Properties of Isotactic Polypropylene/Copper Nanowire Composites.
    Lu PW; Jaihao C; Pan LC; Tsai PW; Huang CS; Brangule A; Zarkov A; Kareiva A; Wang HT; Yang JC
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microchip electrophoresis-copper nanowires for fast and reliable determination of monossacharides in honey samples.
    García M; Escarpa A
    Electrophoresis; 2014 Feb; 35(2-3):425-32. PubMed ID: 24115078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A long-term oxidation barrier for copper nanowires: graphene says yes.
    Shi L; Wang R; Zhai H; Liu Y; Gao L; Sun J
    Phys Chem Chem Phys; 2015 Feb; 17(6):4231-6. PubMed ID: 25571983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires.
    Mehta R; Chugh S; Chen Z
    Nano Lett; 2015 Mar; 15(3):2024-30. PubMed ID: 25650635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable synthesis of cuprous and cupric oxide nanotubes from electrodeposited copper nanowires.
    Lee YI; Goo YS; Chang CH; Lee KJ; Myung NV; Choa YH
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1455-8. PubMed ID: 21456211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper nanowires immobilized on the boards of microfluidic chips for the rapid and simultaneous diagnosis of galactosemia diseases in newborn urine samples.
    García M; Alonso-Fernández JR; Escarpa A
    Anal Chem; 2013 Oct; 85(19):9116-25. PubMed ID: 23998325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper Nanowires as Highly Efficient and Recyclable Catalyst for Rapid Hydrogen Generation from Hydrolysis of Sodium Borohydride.
    Hashimi AS; Nohan MANM; Chin SX; Khiew PS; Zakaria S; Chia CH
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32545513
    [No Abstract]   [Full Text] [Related]  

  • 19. CuO based inorganic-organic hybrid nanowires: a new type of highly sensitive humidity sensor.
    Yuan C; Xu Y; Deng Y; Jiang N; He N; Dai L
    Nanotechnology; 2010 Oct; 21(41):415501. PubMed ID: 20852353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of CuO Nanotubes with Controlled Diameters by Chemical Transformation of Cu Nanowires.
    Kim S; Lee YI
    J Nanosci Nanotechnol; 2015 Oct; 15(10):8166-70. PubMed ID: 26726481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.