BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26939019)

  • 1. The Association of Childhood Fitness to Proactive and Reactive Action Monitoring.
    Kamijo K; Bae S; Masaki H
    PLoS One; 2016; 11(3):e0150691. PubMed ID: 26939019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children.
    Pontifex MB; Raine LB; Johnson CR; Chaddock L; Voss MW; Cohen NJ; Kramer AF; Hillman CH
    J Cogn Neurosci; 2011 Jun; 23(6):1332-45. PubMed ID: 20521857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children.
    Hillman CH; Buck SM; Themanson JR; Pontifex MB; Castelli DM
    Dev Psychol; 2009 Jan; 45(1):114-29. PubMed ID: 19209995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From cognitive motor preparation to visual processing: The benefits of childhood fitness to brain health.
    Berchicci M; Pontifex MB; Drollette ES; Pesce C; Hillman CH; Di Russo F
    Neuroscience; 2015 Jul; 298():211-9. PubMed ID: 25907444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuated error-related potentials in amyotrophic lateral sclerosis with executive dysfunctions.
    Seer C; Joop M; Lange F; Lange C; Dengler R; Petri S; Kopp B
    Clin Neurophysiol; 2017 Aug; 128(8):1496-1503. PubMed ID: 28628797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic fitness and intra-individual variability of neurocognition in preadolescent children.
    Moore RD; Wu CT; Pontifex MB; O'Leary KC; Scudder MR; Raine LB; Johnson CR; Hillman CH
    Brain Cogn; 2013 Jun; 82(1):43-57. PubMed ID: 23511845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of manipulating task difficulty on error-related negativity in individuals with obsessive-compulsive symptoms.
    Kaczkurkin AN
    Biol Psychol; 2013 Apr; 93(1):122-31. PubMed ID: 23318942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The negative association of childhood obesity to cognitive control of action monitoring.
    Kamijo K; Pontifex MB; Khan NA; Raine LB; Scudder MR; Drollette ES; Evans EM; Castelli DM; Hillman CH
    Cereb Cortex; 2014 Mar; 24(3):654-62. PubMed ID: 23146965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: an electrophysiological investigation using a stop-signal task.
    Stahl J; Gibbons H
    Clin Neurophysiol; 2007 Mar; 118(3):581-96. PubMed ID: 17188565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of social exclusion on the ERN and the cognitive control of action monitoring.
    Themanson JR; Ball AB; Khatcherian SM; Rosen PJ
    Psychophysiology; 2014 Mar; 51(3):215–25. PubMed ID: 25003166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Error-monitoring across social and affective processing contexts.
    Suzuki T; Ait Oumeziane B; Novak K; Samuel DB; Foti D
    Int J Psychophysiol; 2020 Apr; 150():37-49. PubMed ID: 32004658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fitness and action monitoring: evidence for improved cognitive flexibility in young adults.
    Themanson JR; Pontifex MB; Hillman CH
    Neuroscience; 2008 Nov; 157(2):319-28. PubMed ID: 18845227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ERP correlates of action monitoring in adolescence.
    Ladouceur CD; Dahl RE; Carter CS
    Ann N Y Acad Sci; 2004 Jun; 1021():329-36. PubMed ID: 15251905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Error processing in the adolescent brain: Age-related differences in electrophysiology, behavioral adaptation, and brain morphology.
    Overbye K; Walhovd KB; Paus T; Fjell AM; Huster RJ; Tamnes CK
    Dev Cogn Neurosci; 2019 Aug; 38():100665. PubMed ID: 31176282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fitness, physical activity, sedentary time, inhibitory control, and neuroelectric activity in children with overweight or obesity: The ActiveBrains project.
    Mora-Gonzalez J; Esteban-Cornejo I; Solis-Urra P; Migueles JH; Cadenas-Sanchez C; Molina-Garcia P; Rodriguez-Ayllon M; Hillman CH; Catena A; Pontifex MB; Ortega FB
    Psychophysiology; 2020 Jun; 57(6):e13579. PubMed ID: 32249933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ERP correlates of dual mechanisms of control in the counting Stroop task.
    West R; Bailey K
    Psychophysiology; 2012 Oct; 49(10):1309-18. PubMed ID: 22958264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the ERN and the significance of errors.
    Hajcak G; Moser JS; Yeung N; Simons RF
    Psychophysiology; 2005 Mar; 42(2):151-60. PubMed ID: 15787852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural indicators of error processing and intraindividual variability in reaction time in 7 and 9 year-olds.
    Richardson C; Anderson M; Reid CL; Fox AM
    Dev Psychobiol; 2011 Apr; 53(3):256-65. PubMed ID: 21400488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in error-related brain activity and post-error behavior over time.
    Themanson JR; Rosen PJ; Pontifex MB; Hillman CH; McAuley E
    Brain Cogn; 2012 Nov; 80(2):257-65. PubMed ID: 22940400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of response-monitoring ERPs in 7- to 25-year-olds.
    Davies PL; Segalowitz SJ; Gavin WJ
    Dev Neuropsychol; 2004; 25(3):355-76. PubMed ID: 15148003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.