These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 26939019)

  • 21. Fitness and ERP Indices of Cognitive Control Mode during Task Preparation in Preadolescent Children.
    Kamijo K; Masaki H
    Front Hum Neurosci; 2016; 10():441. PubMed ID: 27625604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Psychometric properties of the error-related negativity in children and adolescents.
    Meyer A; Bress JN; Proudfit GH
    Psychophysiology; 2014 Jul; 51(7):602-10. PubMed ID: 24646380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The relationship between childhood aerobic fitness and brain functional connectivity.
    Kamijo K; Takeda Y; Takai Y; Haramura M
    Neurosci Lett; 2016 Oct; 632():119-23. PubMed ID: 27585750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aerobic fitness and response variability in preadolescent children performing a cognitive control task.
    Wu CT; Pontifex MB; Raine LB; Chaddock L; Voss MW; Kramer AF; Hillman CH
    Neuropsychology; 2011 May; 25(3):333-41. PubMed ID: 21443340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterizing switching and congruency effects in the Implicit Association Test as reactive and proactive cognitive control.
    Hilgard J; Bartholow BD; Dickter CL; Blanton H
    Soc Cogn Affect Neurosci; 2015 Mar; 10(3):381-8. PubMed ID: 24812074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aerobic fitness and the attentional blink in preadolescent children.
    Wu CT; Hillman CH
    Neuropsychology; 2013 Nov; 27(6):642-53. PubMed ID: 24059445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The association between aerobic fitness and congruency sequence effects in preadolescent children.
    Westfall DR; Kao SC; Scudder MR; Pontifex MB; Hillman CH
    Brain Cogn; 2017 Apr; 113():85-92. PubMed ID: 28160688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diminished error-related brain activity as a promising endophenotype for substance-use disorders: evidence from high-risk offspring.
    Euser AS; Evans BE; Greaves-Lord K; Huizink AC; Franken IH
    Addict Biol; 2013 Nov; 18(6):970-84. PubMed ID: 23145495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of human internal globus pallidus in the early modulation of cortical error-related activity.
    Herrojo Ruiz M; Huebl J; Schönecker T; Kupsch A; Yarrow K; Krauss JK; Schneider GH; Kühn AA
    Cereb Cortex; 2014 Jun; 24(6):1502-17. PubMed ID: 23349222
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The persistent influence of pediatric concussion on attention and cognitive control during flanker performance.
    Moore RD; Pindus DM; Drolette ES; Scudder MR; Raine LB; Hillman CH
    Biol Psychol; 2015 Jul; 109():93-102. PubMed ID: 25951782
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Why do we make mistakes? Neurocognitive processes during the preparation-perception-action cycle and error-detection.
    Perri RL; Berchicci M; Lucci G; Spinelli D; Di Russo F
    Neuroimage; 2015 Jun; 113():320-8. PubMed ID: 25812715
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Basal ganglia volume is associated with aerobic fitness in preadolescent children.
    Chaddock L; Erickson KI; Prakash RS; VanPatter M; Voss MW; Pontifex MB; Raine LB; Hillman CH; Kramer AF
    Dev Neurosci; 2010 Aug; 32(3):249-56. PubMed ID: 20693803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cognitive control in preadolescent children with risk factors for metabolic syndrome.
    Scudder MR; Khan NA; Lambourne K; Drollette ES; Herrmann SD; Betts JL; Washburn RA; Donnelly JE; Hillman CH
    Health Psychol; 2015 Mar; 34(3):243-52. PubMed ID: 25133829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced error-related negativity on flanker errors: error expectancy or error significance?
    Maier ME; di Pellegrino G; Steinhauser M
    Psychophysiology; 2012 Jul; 49(7):899-908. PubMed ID: 22524281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aerobic Fitness Is Associated With Cognitive Control Strategy in Preadolescent Children.
    Kao SC; Drollette ES; Scudder MR; Raine LB; Westfall DR; Pontifex MB; Hillman CH
    J Mot Behav; 2017; 49(2):150-162. PubMed ID: 27715503
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Age-related differences in the recruitment of proactive and reactive control in a situation of sustained attention.
    Staub B; Doignon-Camus N; Bacon E; Bonnefond A
    Biol Psychol; 2014 Dec; 103():38-47. PubMed ID: 25148787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task.
    Schevernels H; Bombeke K; Van der Borght L; Hopf JM; Krebs RM; Boehler CN
    Neuroimage; 2015 Nov; 121():115-25. PubMed ID: 26188262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does the error negativity reflect response conflict strength? Evidence from a Simon task.
    Masaki H; Falkenstein M; Stürmer B; Pinkpank T; Sommer W
    Psychophysiology; 2007 Jul; 44(4):579-85. PubMed ID: 17437556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrophysiological evidence of enhanced performance monitoring in recently abstinent alcoholic men.
    Padilla ML; Colrain IM; Sullivan EV; Mayer BZ; Turlington SR; Hoffman LR; Wagstaff AE; Pfefferbaum A
    Psychopharmacology (Berl); 2011 Jan; 213(1):81-91. PubMed ID: 20941595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A neurophysiological study of the detrimental effects of alprazolam on human action monitoring.
    Riba J; Rodríguez-Fornells A; Münte TF; Barbanoj MJ
    Brain Res Cogn Brain Res; 2005 Oct; 25(2):554-65. PubMed ID: 16168630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.