These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64 related articles for article (PubMed ID: 26939079)
1. Does As(III) interact with Fe(II), Fe(III) and organic matter through ternary complexes? Catrouillet C; Davranche M; Dia A; Bouhnik-Le Coz M; Demangeat E; Gruau G J Colloid Interface Sci; 2016 May; 470():153-161. PubMed ID: 26939079 [TBL] [Abstract][Full Text] [Related]
2. Thiol groups controls on arsenite binding by organic matter: new experimental and modeling evidence. Catrouillet C; Davranche M; Dia A; Bouhnik-Le Coz M; Pédrot M; Marsac R; Gruau G J Colloid Interface Sci; 2015 Dec; 460():310-20. PubMed ID: 26348657 [TBL] [Abstract][Full Text] [Related]
3. Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As. Sharma P; Ofner J; Kappler A Environ Sci Technol; 2010 Jun; 44(12):4479-85. PubMed ID: 20433135 [TBL] [Abstract][Full Text] [Related]
4. Spectroscopic evidence for ternary complex formation between arsenate and ferric iron complexes of humic substances. Mikutta C; Kretzschmar R Environ Sci Technol; 2011 Nov; 45(22):9550-7. PubMed ID: 21985502 [TBL] [Abstract][Full Text] [Related]
5. Mobilization and transformation of arsenic from ternary complex OM-Fe(III)-As(V) in the presence of As(V)-reducing bacteria. Cai X; Wang P; Li Z; Li Y; Yin N; Du H; Cui Y J Hazard Mater; 2020 Jan; 381():120975. PubMed ID: 31445471 [TBL] [Abstract][Full Text] [Related]
6. Competitive effect of iron(III) on metal complexation by humic substances: characterisation of ageing processes. Lippold H; Evans ND; Warwick P; Kupsch H Chemosphere; 2007 Mar; 67(5):1050-6. PubMed ID: 17140629 [TBL] [Abstract][Full Text] [Related]
7. How does organic matter constrain the nature, size and availability of Fe nanoparticles for biological reduction? Pédrot M; Le Boudec A; Davranche M; Dia A; Henin O J Colloid Interface Sci; 2011 Jul; 359(1):75-85. PubMed ID: 21482426 [TBL] [Abstract][Full Text] [Related]
8. Evaluation and modelling of dissolved organic matter reactivity toward As(III) and As(V) – implication in environmental arsenic speciation. Lenoble V; Dang DH; Loustau Cazalet M; Mounier S; Pfeifer HR; Garnier C Talanta; 2015 Mar; 134():530-537. PubMed ID: 25618704 [TBL] [Abstract][Full Text] [Related]
9. Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis. Hori M; Shozugawa K; Matsuo M J Hazard Mater; 2015 Mar; 285():140-7. PubMed ID: 25497027 [TBL] [Abstract][Full Text] [Related]
10. Desorption of arsenic from clay and humic acid-coated clay by dissolved phosphate and silicate. Sharma P; Kappler A J Contam Hydrol; 2011 Nov; 126(3-4):216-25. PubMed ID: 22115087 [TBL] [Abstract][Full Text] [Related]
11. Exploring the ability of cations to facilitate binding between inorganic oxyanions and humic acid. Martin DP; Seiter JM; Lafferty BJ; Bednar AJ Chemosphere; 2017 Jan; 166():192-196. PubMed ID: 27697707 [TBL] [Abstract][Full Text] [Related]
12. Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron. Mak MS; Lo IM Chemosphere; 2011 Jun; 84(2):234-40. PubMed ID: 21530997 [TBL] [Abstract][Full Text] [Related]
13. Effect of environmental factors on the complexation of iron and humic acid. Fang K; Yuan D; Zhang L; Feng L; Chen Y; Wang Y J Environ Sci (China); 2015 Jan; 27():188-96. PubMed ID: 25597677 [TBL] [Abstract][Full Text] [Related]
14. Atrazine photodegradation in aqueous solution induced by interaction of humic acids and iron: photoformation of iron(II) and hydrogen peroxide. Ou X; Quan X; Chen S; Zhao H; Zhang Y J Agric Food Chem; 2007 Oct; 55(21):8650-6. PubMed ID: 17892253 [TBL] [Abstract][Full Text] [Related]
15. Competition between humic acid and carbonates for rare earth elements complexation. Pourret O; Davranche M; Gruau G; Dia A J Colloid Interface Sci; 2007 Jan; 305(1):25-31. PubMed ID: 17052726 [TBL] [Abstract][Full Text] [Related]
16. Phosphate Removal in Relation to Structural Development of Humic Acid-Iron Coprecipitates. Chen KY; Hsu LC; Chan YT; Cho YL; Tsao FY; Tzou YM; Hsieh YC; Liu YT Sci Rep; 2018 Jul; 8(1):10363. PubMed ID: 29985471 [TBL] [Abstract][Full Text] [Related]
17. Experimental determination and modeling of arsenic complexation with humic and fulvic acids. Fakour H; Lin TF J Hazard Mater; 2014 Aug; 279():569-78. PubMed ID: 25108831 [TBL] [Abstract][Full Text] [Related]
18. How crucial is the impact of calcium on the reactivity of iron-organic matter aggregates? Insights from arsenic. Beauvois A; Vantelon D; Jestin J; Bouhnik-Le Coz M; Catrouillet C; Briois V; Bizien T; Davranche M J Hazard Mater; 2021 Feb; 404(Pt A):124127. PubMed ID: 33049637 [TBL] [Abstract][Full Text] [Related]
19. The immobilization of U(vi) on iron oxyhydroxides under various physicochemical conditions. Ping L; Zhuoxin Y; Jianfeng L; Qiang J; Yaofang D; Qiaohui F; Wangsuo W Environ Sci Process Impacts; 2014; 16(10):2278-87. PubMed ID: 25043996 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamics of metal cation binding by a solid soil-derived humic acid: binding of Fe(III), Pb(II), and Cu(II). Ghabbour EA; Shaker M; El-Toukhy A; Abid IM; Davies G Chemosphere; 2006 Apr; 63(3):477-83. PubMed ID: 16289228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]