BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26939442)

  • 21. A highly efficient step-wise biotransformation strategy for direct conversion of phytosterol to boldenone.
    Tang R; Shen Y; Xia M; Tu L; Luo J; Geng Y; Gao T; Zhou H; Zhao Y; Wang M
    Bioresour Technol; 2019 Jul; 283():242-250. PubMed ID: 30913432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic Techniques for Manipulation of the Phytosterol Biotransformation Strain Mycobacterium neoaurum NRRL B-3805.
    Loraine JK; Smith MCM
    Methods Mol Biol; 2017; 1645():93-108. PubMed ID: 28710623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutation breeding of high 4-androstene-3,17-dione-producing Mycobacterium neoaurum ZADF-4 by atmospheric and room temperature plasma treatment.
    Liu C; Zhang X; Rao ZM; Shao ML; Zhang LL; Wu D; Xu ZH; Li H
    J Zhejiang Univ Sci B; 2015 Apr; 16(4):286-95. PubMed ID: 25845362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing the sustainability of KsdD as a biocatalyst for steroid transformation by immobilization on epoxy support.
    Mao S; Chen Y; Sun J; Wei C; Song Z; Lu F; Qin HM
    Enzyme Microb Technol; 2021 May; 146():109777. PubMed ID: 33812565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols.
    Yao K; Xu LQ; Wang FQ; Wei DZ
    Metab Eng; 2014 Jul; 24():181-91. PubMed ID: 24831710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Sterol Carrier Hydroxypropyl-β-Cyclodextrin Enhances the Metabolism of Phytosterols by Mycobacterium neoaurum.
    Su L; Xu S; Shen Y; Xia M; Ren X; Wang L; Shang Z; Wang M
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32414803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of hydroxypropyl-β-cyclodextrin on phytosterol biotransformation by different strains of Mycobacterium neoaurum.
    Shen YB; Wang M; Li HN; Wang YB; Luo JM
    J Ind Microbiol Biotechnol; 2012 Sep; 39(9):1253-9. PubMed ID: 22614451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Preparation of androsta-1,4-diene-3,17-dione from sterols using Mycobacterium neoaurum VKPM As-1656 strain].
    Molchanova MA; Andriushina VA; Savinova TS; Stytsenko TS; Rodina NV; Voĭshvillo NE
    Bioorg Khim; 2007; 33(3):379-84. PubMed ID: 17682396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new steroid-transforming strain of Mycobacterium neoaurum and cloning of 3-ketosteroid 9alpha-hydroxylase in NwIB-01.
    Wei W; Fan S; Wang F; Wei D
    Appl Biochem Biotechnol; 2010 Nov; 162(5):1446-56. PubMed ID: 20204712
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexpression of cytochrome p450 125 in Mycobacterium: a rational strategy in the promotion of phytosterol biotransformation.
    Su L; Shen Y; Xia M; Shang Z; Xu S; An X; Wang M
    J Ind Microbiol Biotechnol; 2018 Oct; 45(10):857-867. PubMed ID: 30073539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whole-Genome Analysis of
    Zhang J; Zhang R; Song S; Su Z; Shi J; Cao H; Zhang B
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047121
    [No Abstract]   [Full Text] [Related]  

  • 32. Loop pathways are responsible for tuning the accumulation of C19- and C22-sterol intermediates in the mycobacterial phytosterol degradation pathway.
    Song S; He J; Gao M; Huang Y; Cheng X; Su Z
    Microb Cell Fact; 2023 Jan; 22(1):19. PubMed ID: 36710325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification, characterization, and application of a high activity 3-ketosteroid-Δ
    Zhang R; Xu X; Cao H; Yuan C; Yuminaga Y; Zhao S; Shi J; Zhang B
    Appl Microbiol Biotechnol; 2019 Aug; 103(16):6605-6616. PubMed ID: 31289904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of ksdD gene encoding 3-ketosteroid-Delta1-dehydrogenase from Arthrobacter simplex in Bacillus subtilis.
    Li Y; Lu F; Sun T; Du L
    Lett Appl Microbiol; 2007 May; 44(5):563-8. PubMed ID: 17451526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and targeted disruption of the gene encoding the main 3-ketosteroid dehydrogenase in Mycobacterium smegmatis.
    Brzostek A; Śliwiński T; Rumijowska-Galewicz A; Korycka-Machała M; Dziadek J
    Microbiology (Reading); 2005 Jul; 151(Pt 7):2393-2402. PubMed ID: 16000729
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of 9,21-dihydroxy-20-methyl-pregna-4-en-3-one from phytosterols in Mycobacterium neoaurum by modifying multiple genes and improving the intracellular environment.
    Yuan CY; Ma ZG; Zhang JX; Liu XC; Du GL; Sun JS; Shi JP; Zhang BG
    Microb Cell Fact; 2021 Dec; 20(1):229. PubMed ID: 34949197
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Mutation breeding of high 9α-hydroxy-androst-4-ene-3,17- dione transforming strains from phytosterols and their conversion process optimization].
    Ma Y; Wang X; Wang M; Li H; Shi J; Xu Z
    Sheng Wu Gong Cheng Xue Bao; 2017 Jul; 33(7):1198-1206. PubMed ID: 28869739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving the production of 9α-hydroxy-4-androstene-3,17-dione from phytosterols by 3-ketosteroid-Δ
    Liu X; Zhang J; Yuan C; Du G; Han S; Shi J; Sun J; Zhang B
    Microb Cell Fact; 2023 Mar; 22(1):53. PubMed ID: 36922830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient 9α-hydroxy-4-androstene-3,17-dione production by engineered Bacillus subtilis co-expressing Mycobacterium neoaurum 3-ketosteroid 9α-hydroxylase and B. subtilis glucose 1-dehydrogenase with NADH regeneration.
    Zhang X; Rao Z; Zhang L; Xu M; Yang T
    Springerplus; 2016; 5(1):1207. PubMed ID: 27516945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancement of 9α-Hydroxy-4-androstene-3,17-dione Production from Soybean Phytosterols by Deficiency of a Regulated Intramembrane Proteolysis Metalloprotease in Mycobacterium neoaurum.
    Xiong LB; Sun WJ; Liu YJ; Wang FQ; Wei DZ
    J Agric Food Chem; 2017 Dec; 65(48):10520-10525. PubMed ID: 29131627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.