These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 26939689)

  • 21. Metal-Nitrogen-Carbon Electrocatalysts for CO
    Delafontaine L; Asset T; Atanassov P
    ChemSusChem; 2020 Apr; 13(7):1688-1698. PubMed ID: 31961996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium-looping reforming of methane realizes in situ CO
    Tian S; Yan F; Zhang Z; Jiang J
    Sci Adv; 2019 Apr; 5(4):eaav5077. PubMed ID: 30993203
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancing CO and H
    Al-Shafei E; Aljishi M; Alasseel A; Al-ShaikhAli AH; Albahar M
    ACS Omega; 2024 Apr; 9(15):17646-17654. PubMed ID: 38645309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rh/InGaN
    Li Y; Li J; Yu T; Qiu L; Hasan SMN; Yao L; Pan H; Arafin S; Sadaf SM; Zhu L; Zhou B
    Sci Bull (Beijing); 2024 May; 69(10):1400-1409. PubMed ID: 38402030
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CO
    Afandi NS; Mohammadi M; Ichikawa S; Mohamed AR
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43011-43027. PubMed ID: 32725565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of NiO into the CO
    González A; Martínez-Cruz MA; Alcántar-Vázquez B; Portillo-Vélez NS; Pfeiffer H; Lara-García HA
    Heliyon; 2024 Jan; 10(2):e24645. PubMed ID: 38304793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ NAP-XPS spectroscopy during methane dry reforming on ZrO
    Rameshan C; Li H; Anic K; Roiaz M; Pramhaas V; Rameshan R; Blume R; Hävecker M; Knudsen J; Knop-Gericke A; Rupprechter G
    J Phys Condens Matter; 2018 Jul; 30(26):264007. PubMed ID: 29786619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Production of H
    Shi K; Yan J; Menéndez JA; Luo X; Yang G; Chen Y; Lester E; Wu T
    Front Chem; 2020; 8():3. PubMed ID: 32039161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined Steam and CO
    Sumarasingha W; Tungkamani S; Ratana T; Supasitmongkol S; Phongaksorn M
    ACS Omega; 2023 Dec; 8(49):46425-46437. PubMed ID: 38107949
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A semiconducting hybrid of RhO
    Li D; Wu Z; Li Y; Fan X; Hasan SMN; Arafin S; Rahman MA; Li J; Wang Z; Yu T; Kong X; Zhu L; Sadaf SM; Zhou B
    PNAS Nexus; 2023 Nov; 2(11):pgad347. PubMed ID: 38024421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses.
    Kumar B; Kumar S; Sinha S; Kumar S
    Bioresour Technol; 2018 Aug; 261():385-393. PubMed ID: 29684868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous production of syngas and carbon nanotubes from CO
    Sae-Tang N; Saconsint S; Srifa A; Koo-Amornpattana W; Assabumrungrat S; Fukuhara C; Ratchahat S
    Sci Rep; 2024 Jul; 14(1):16282. PubMed ID: 39009758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Advances in Bimetallic Catalysts for Methane Steam Reforming in Hydrogen Production: Current Trends, Challenges, and Future Prospects.
    Yusuf BO; Umar M; Kotob E; Abdulhakam A; Taialla OA; Awad MM; Hussain I; Alhooshani KR; Ganiyu SA
    Chem Asian J; 2023 Sep; ():e202300641. PubMed ID: 37740712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A thermo-photo hybrid process for steam reforming of methane: highly efficient visible light photocatalysis.
    Han B; Wei W; Li M; Sun K; Hu YH
    Chem Commun (Camb); 2019 Jul; 55(54):7816-7819. PubMed ID: 31215574
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly Efficient and Selective Light-Driven Dry Reforming of Methane by a Carbon Exchange Mechanism.
    Xiong H; Dong Y; Hu C; Chen Y; Liu H; Long R; Kong T; Xiong Y
    J Am Chem Soc; 2024 Apr; 146(13):9465-9475. PubMed ID: 38507822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zirconium-Assisted Activation of Palladium To Boost Syngas Production by Methane Dry Reforming.
    Köpfle N; Götsch T; Grünbacher M; Carbonio EA; Hävecker M; Knop-Gericke A; Schlicker L; Doran A; Kober D; Gurlo A; Penner S; Klötzer B
    Angew Chem Int Ed Engl; 2018 Oct; 57(44):14613-14618. PubMed ID: 30179293
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Promising Utilization of CO
    Ray D; Chawdhury P; Subrahmanyam C
    ACS Omega; 2020 Jun; 5(23):14040-14050. PubMed ID: 32566870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Syngas production and trace element emissions from microwave-assisted chemical looping gasification of heavy metal hyperaccumulators.
    Zhang B; Zhang J; Zhong Z; Wang W; Zhu M
    Sci Total Environ; 2019 Apr; 659():612-620. PubMed ID: 31096390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Syngas as Electron Donor for Sulfate and Thiosulfate Reducing Haloalkaliphilic Microorganisms in a Gas-Lift Bioreactor.
    Plugge CM; Sousa JAB; Christel S; Dopson M; Bijmans MFM; Stams AJM; Diender M
    Microorganisms; 2020 Sep; 8(9):. PubMed ID: 32971967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review on high-pressure heterogeneous catalytic processes for gas-phase CO
    Villora-Picó JJ; González-Arias J; Pastor-Pérez L; Odriozola JA; Reina TR
    Environ Res; 2024 Jan; 240(Pt 1):117520. PubMed ID: 37923108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.