These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 26939794)

  • 41. Linkage between growth phenology and climate-growth responses along landscape gradients in boreal forests.
    Tumajer J; Altman J; Lehejček J
    Sci Total Environ; 2023 Dec; 905():167153. PubMed ID: 37730045
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau.
    Li X; Liang E; Gričar J; Rossi S; Čufar K; Ellison AM
    Sci Bull (Beijing); 2017 Jun; 62(11):804-812. PubMed ID: 36659277
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines.
    Rehm EM; Feeley KJ
    Ecology; 2015 Jul; 96(7):1856-65. PubMed ID: 26378308
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Climate change effects on tree growth from Romanian forest monitoring Level II plots.
    Ciceu A; Popa I; Leca S; Pitar D; Chivulescu S; Badea O
    Sci Total Environ; 2020 Jan; 698():134129. PubMed ID: 31499344
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Relationship between radial growth of Abies georgei and climate factors at different altitudes on the eastern slope of Yulong Snow Mountain, China.].
    Zhang Y; Yin DC; Tian K; He RH; He MZ; Li YC; Sun DC; Zhang WG
    Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2355-2361. PubMed ID: 30039675
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?
    Foster JR; Finley AO; D'Amato AW; Bradford JB; Banerjee S
    Glob Chang Biol; 2016 Jun; 22(6):2138-51. PubMed ID: 26717889
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data.
    Yang B; He M; Shishov V; Tychkov I; Vaganov E; Rossi S; Ljungqvist FC; Bräuning A; Grießinger J
    Proc Natl Acad Sci U S A; 2017 Jul; 114(27):6966-6971. PubMed ID: 28630302
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Moisture availability limits subalpine tree establishment.
    Andrus RA; Harvey BJ; Rodman KC; Hart SJ; Veblen TT
    Ecology; 2018 Mar; 99(3):567-575. PubMed ID: 29469981
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tree resilience to drought increases in the Tibetan Plateau.
    Fang O; Zhang QB
    Glob Chang Biol; 2019 Jan; 25(1):245-253. PubMed ID: 30375124
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The onset of xylogenesis in Smith fir is not related to outer bark thickness.
    Li X; Rossi S; Liang E
    Am J Bot; 2019 Oct; 106(10):1386-1391. PubMed ID: 31529807
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Responses of radial growth to climate change in Pinus massoniana at different altitudes and slopes.].
    Qiao JJ; Wang T; Pan L; Sun YJ
    Ying Yong Sheng Tai Xue Bao; 2019 Jul; 30(7):2231-2240. PubMed ID: 31418225
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Variations in the intrinsic water-use efficiency of north Patagonian forests under a present climate change scenario: tree age, site conditions and long-term environmental effects.
    Arco Molina JG; Helle G; Hadad MA; Roig FA
    Tree Physiol; 2019 Apr; 39(4):661-678. PubMed ID: 30649565
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Disparity in elevational shifts of upper species limits in response to recent climate warming in the Qinling Mountains, North-central China.
    Shi H; Zhou Q; Xie F; He N; He R; Zhang K; Zhang Q; Dang H
    Sci Total Environ; 2020 Mar; 706():135718. PubMed ID: 31940727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Response of radial growth of
    Yu J; Chen JJ; Meng SW; Zhou H; Zhou G; Gao LS; Wang YP; Liu QJ
    Ying Yong Sheng Tai Xue Bao; 2021 Jan; 32(1):46-56. PubMed ID: 33477212
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability.
    Gea-Izquierdo G; Fonti P; Cherubini P; Martín-Benito D; Chaar H; Cañellas I
    Tree Physiol; 2012 Apr; 32(4):401-13. PubMed ID: 22508730
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Annual increments of juniper dwarf shrubs above the tree line on the central Tibetan Plateau: a useful climatic proxy.
    Liang E; Lu X; Ren P; Li X; Zhu L; Eckstein D
    Ann Bot; 2012 Mar; 109(4):721-8. PubMed ID: 22210848
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Forest vulnerability to extreme climatic events in Romanian Scots pine forests.
    Sidor CG; Camarero JJ; Popa I; Badea O; Apostol EN; Vlad R
    Sci Total Environ; 2019 Aug; 678():721-727. PubMed ID: 31078863
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Tree-ring growth responses of Mongolian oak (Quercus mongolica) to climate change in southern northeast: a case study in Qianshan Mountains].
    Teng L; Xing-Yuan H; Zhen-Ju C
    Ying Yong Sheng Tai Xue Bao; 2014 Jul; 25(7):1841-8. PubMed ID: 25345030
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tree growth-climate relationships in a forest-plot network on Mediterranean mountains.
    Fyllas NM; Christopoulou A; Galanidis A; Michelaki CZ; Dimitrakopoulos PG; Fulé PZ; Arianoutsou M
    Sci Total Environ; 2017 Nov; 598():393-403. PubMed ID: 28448931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.