BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 26939864)

  • 1. Thermo-responsive hydrogels from cellulose-based polyelectrolytes and catanionic vesicles for biomedical application.
    Milcovich G; Antunes F; Golob S; Farra R; Grassi M; Voinovich D; Grassi G; Asaro F
    J Biomed Mater Res A; 2016 Jul; 104(7):1668-79. PubMed ID: 26939864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network formation of catanionic vesicles and oppositely charged polyelectrolytes. Effect of polymer charge density and hydrophobic modification.
    Antunes FE; Marques EF; Gomes R; Thuresson K; Lindman B; Miguel MG
    Langmuir; 2004 May; 20(11):4647-56. PubMed ID: 15969177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological characterization of a bacterial cellulose-acrylic acid polymeric matrix.
    Halib N; Mohd Amin MC; Ahmad I; Abrami M; Fiorentino S; Farra R; Grassi G; Musiani F; Lapasin R; Grassi M
    Eur J Pharm Sci; 2014 Oct; 62():326-33. PubMed ID: 24932712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the state and dynamics of water in hydrogels of cellulose ethers by 1H NMR spectroscopy.
    Baumgartner S; Lahajnar G; Sepe A; Kristl J
    AAPS PharmSciTech; 2002; 3(4):E36. PubMed ID: 12916930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheology of Microcrystalline Cellulose and Sodiumcarboxymethyl Cellulose hydrogels using a controlled stress rheometer: part II.
    Rudraraju VS; Wyandt CM
    Int J Pharm; 2005 Mar; 292(1-2):63-73. PubMed ID: 15725554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating carbohydrate-based hydrogels as viscoelastic lubricant substitute for articular cartilages.
    Milcovich G; Antunes FE; Farra R; Grassi G; Grassi M; Asaro F
    Int J Biol Macromol; 2017 Sep; 102():796-804. PubMed ID: 28450242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional cellulose-based hydrogels for biomedical applications.
    Fu LH; Qi C; Ma MG; Wan P
    J Mater Chem B; 2019 Mar; 7(10):1541-1562. PubMed ID: 32254901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelation of charged bio-nanocompartments induced by associative and non-associative polysaccharides.
    Antunes FE; Coppola L; Rossi CO; Ranieri GA
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):134-40. PubMed ID: 18621514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.
    Altomare L; Cochis A; Carletta A; Rimondini L; Farè S
    J Mater Sci Mater Med; 2016 May; 27(5):95. PubMed ID: 26984360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers.
    Dash R; Foston M; Ragauskas AJ
    Carbohydr Polym; 2013 Jan; 91(2):638-45. PubMed ID: 23121958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release.
    Paukkonen H; Kunnari M; Laurén P; Hakkarainen T; Auvinen VV; Oksanen T; Koivuniemi R; Yliperttula M; Laaksonen T
    Int J Pharm; 2017 Oct; 532(1):269-280. PubMed ID: 28888974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheological characterization of Microcrystalline Cellulose/Sodiumcarboxymethyl cellulose hydrogels using a controlled stress rheometer: part I.
    Rudraraju VS; Wyandt CM
    Int J Pharm; 2005 Mar; 292(1-2):53-61. PubMed ID: 15725553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superporous thermo-responsive hydrogels by combination of cellulose fibers and aligned micropores.
    Halake KS; Lee J
    Carbohydr Polym; 2014 May; 105():184-92. PubMed ID: 24708968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiphysics modelling of volume phase transition of ionic hydrogels responsive to thermal stimulus.
    Li H; Wang X; Wang Z; Lam KY
    Macromol Biosci; 2005 Sep; 5(9):904-14. PubMed ID: 16136570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled release of Mitomycin C from modified cellulose based thermo-gel prevents post-operative de novo peritoneal adhesion.
    Sultana T; Van Hai H; Park M; Lee SY; Lee BT
    Carbohydr Polym; 2020 Feb; 229():115552. PubMed ID: 31826495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity.
    Yang X; Bakaic E; Hoare T; Cranston ED
    Biomacromolecules; 2013 Dec; 14(12):4447-55. PubMed ID: 24206059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological behavior and Ibuprofen delivery applications of pH responsive composite alginate hydrogels.
    Jabeen S; Maswal M; Chat OA; Rather GM; Dar AA
    Colloids Surf B Biointerfaces; 2016 Mar; 139():211-8. PubMed ID: 26717508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of composition on the dielectric properties of hydrogels for biomedical applications.
    Alexe-Ionescu AL; Barbero G; Freire FC; Merletti R
    Physiol Meas; 2010 Oct; 31(10):S169-82. PubMed ID: 20834110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms behind the faceting of catanionic vesicles by polycations: chain crystallization and segregation.
    Antunes FE; Brito RO; Marques EF; Lindman B; Miguel M
    J Phys Chem B; 2007 Jan; 111(1):116-23. PubMed ID: 17201435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures.
    Abou-Saleh RH; Hernandez-Gomez MC; Amsbury S; Paniagua C; Bourdon M; Miyashima S; Helariutta Y; Fuller M; Budtova T; Connell SD; Ries ME; Benitez-Alfonso Y
    Nat Commun; 2018 Oct; 9(1):4538. PubMed ID: 30382102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.