These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 26940154)
21. Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus. Arnott MA; Michael RA; Thompson CR; Hough DW; Danson MJ J Mol Biol; 2000 Dec; 304(4):657-68. PubMed ID: 11099387 [TBL] [Abstract][Full Text] [Related]
22. Improvement of stability of nitrile hydratase via protein fragment swapping. Cui Y; Cui W; Liu Z; Zhou L; Kobayashi M; Zhou Z Biochem Biophys Res Commun; 2014 Jul; 450(1):401-8. PubMed ID: 24944015 [TBL] [Abstract][Full Text] [Related]
23. Molecular basis of cold adaptation. D'Amico S; Claverie P; Collins T; Georlette D; Gratia E; Hoyoux A; Meuwis MA; Feller G; Gerday C Philos Trans R Soc Lond B Biol Sci; 2002 Jul; 357(1423):917-25. PubMed ID: 12171655 [TBL] [Abstract][Full Text] [Related]
24. Hyperthermophilic enzymes--stability, activity and implementation strategies for high temperature applications. Unsworth LD; van der Oost J; Koutsopoulos S FEBS J; 2007 Aug; 274(16):4044-56. PubMed ID: 17683334 [TBL] [Abstract][Full Text] [Related]
25. Enzyme stabilization via computationally guided protein stapling. Moore EJ; Zorine D; Hansen WA; Khare SD; Fasan R Proc Natl Acad Sci U S A; 2017 Nov; 114(47):12472-12477. PubMed ID: 29109284 [TBL] [Abstract][Full Text] [Related]
26. Eurythermalism and the temperature dependence of enzyme activity. Lee CK; Daniel RM; Shepherd C; Saul D; Cary SC; Danson MJ; Eisenthal R; Peterson ME FASEB J; 2007 Jun; 21(8):1934-41. PubMed ID: 17341686 [TBL] [Abstract][Full Text] [Related]
27. A general method of terminal truncation, evolution, and re-elongation to generate enzymes of enhanced stability. Hecky J; Mason JM; Arndt KM; Müller KM Methods Mol Biol; 2007; 352():275-304. PubMed ID: 17041271 [TBL] [Abstract][Full Text] [Related]
28. Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Lonhienne T; Gerday C; Feller G Biochim Biophys Acta; 2000 Nov; 1543(1):1-10. PubMed ID: 11087936 [TBL] [Abstract][Full Text] [Related]
29. Enhanced catalytic site thermal stability of cold-adapted esterase EstK by a W208Y mutation. Boyineni J; Kim J; Kang BS; Lee C; Jang SH Biochim Biophys Acta; 2014 Jun; 1844(6):1076-82. PubMed ID: 24667115 [TBL] [Abstract][Full Text] [Related]
30. Ultrasound assisted intensification of enzyme activity and its properties: a mini-review. Nadar SS; Rathod VK World J Microbiol Biotechnol; 2017 Aug; 33(9):170. PubMed ID: 28831716 [TBL] [Abstract][Full Text] [Related]
31. Engineering a substrate-specific cold-adapted subtilisin. Tindbaek N; Svendsen A; Oestergaard PR; Draborg H Protein Eng Des Sel; 2004 Feb; 17(2):149-56. PubMed ID: 15047911 [TBL] [Abstract][Full Text] [Related]
32. Enzyme Stability-Activity Trade-Off: New Insights from Protein Stability Weaknesses and Evolutionary Conservation. Hou Q; Rooman M; Pucci F J Chem Theory Comput; 2023 Jun; 19(12):3664-3671. PubMed ID: 37276063 [TBL] [Abstract][Full Text] [Related]
33. A Review of Advanced Molecular Engineering Approaches to Enhance the Thermostability of Enzyme Breakers: From Prospective of Upstream Oil and Gas Industry. Naeem M; Khalil AB; Tariq Z; Mahmoud M Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163528 [TBL] [Abstract][Full Text] [Related]
34. Directed evolution on the cold adapted properties of TAB5 alkaline phosphatase. Koutsioulis D; Wang E; Tzanodaskalaki M; Nikiforaki D; Deli A; Feller G; Heikinheimo P; Bouriotis V Protein Eng Des Sel; 2008 May; 21(5):319-27. PubMed ID: 18411226 [TBL] [Abstract][Full Text] [Related]
35. A combined approach of mass spectrometry, molecular modeling, and site-directed mutagenesis highlights key structural features responsible for the thermostability of Sulfolobus solfataricus carboxypeptidase. Sommaruga S; De Palma A; Mauri PL; Trisciani M; Basilico F; Martelli PL; Casadio R; Tortora P; Occhipinti E Proteins; 2008 Jun; 71(4):1843-52. PubMed ID: 18175312 [TBL] [Abstract][Full Text] [Related]
36. The universality of enzymatic rate-temperature dependency. Elias M; Wieczorek G; Rosenne S; Tawfik DS Trends Biochem Sci; 2014 Jan; 39(1):1-7. PubMed ID: 24315123 [TBL] [Abstract][Full Text] [Related]
37. Structural adaptation to low temperatures--analysis of the subunit interface of oligomeric psychrophilic enzymes. Tronelli D; Maugini E; Bossa F; Pascarella S FEBS J; 2007 Sep; 274(17):4595-608. PubMed ID: 17697122 [TBL] [Abstract][Full Text] [Related]
38. A theoretical analysis on characteristics of protein structures induced by cold denaturation. Oshima H; Yoshidome T; Amano K; Kinoshita M J Chem Phys; 2009 Nov; 131(20):205102. PubMed ID: 19947708 [TBL] [Abstract][Full Text] [Related]
39. A new intrinsic thermal parameter for enzymes reveals true temperature optima. Peterson ME; Eisenthal R; Danson MJ; Spence A; Daniel RM J Biol Chem; 2004 May; 279(20):20717-22. PubMed ID: 14973131 [TBL] [Abstract][Full Text] [Related]
40. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods. Chen A; Li Y; Nie J; McNeil B; Jeffrey L; Yang Y; Bai Z Enzyme Microb Technol; 2015 Oct; 78():74-83. PubMed ID: 26215347 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]