BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26940160)

  • 1. Effects of intercropping of oat (Avena sativa L.) with white lupin (Lupinus albus L.) on the mobility of target elements for phytoremediation and phytomining in soil solution.
    Wiche O; Székely B; Kummer NA; Moschner C; Heilmeier H
    Int J Phytoremediation; 2016 Sep; 18(9):900-7. PubMed ID: 26940160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: a strategy to increase the benefits of soil phytoremediation.
    Fumagalli P; Comolli R; Ferrè C; Ghiani A; Gentili R; Citterio S
    J Environ Manage; 2014 Dec; 145():35-42. PubMed ID: 24992047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation.
    Martínez-Alcalá I; Walker DJ; Bernal MP
    Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Lupinus albus L. root activities on As and Cu mobility after addition of iron-based soil amendments.
    Fresno T; Peñalosa JM; Santner J; Puschenreiter M; Moreno-Jiménez E
    Chemosphere; 2017 Sep; 182():373-381. PubMed ID: 28505579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus.
    Houben D; Sonnet P
    Chemosphere; 2015 Nov; 139():644-51. PubMed ID: 25559173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of substrate properties and phosphorus supply on facilitating the uptake of rare earth elements (REE) in mixed culture cropping systems of Hordeum vulgare, Lupinus albus and Lupinus angustifolius.
    Monei N; Hitch M; Heim J; Pourret O; Heilmeier H; Wiche O
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):57172-57189. PubMed ID: 35349058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chelate-assisted phytoextraction of heavy metals in a soil contaminated with a pyritic sludge.
    Peñalosa JM; Carpena RO; Vázquez S; Agha R; Granado A; Sarro MJ; Esteban E
    Sci Total Environ; 2007 May; 378(1-2):199-204. PubMed ID: 17328942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of heavy metals and As-loaded lupin root mineralization to the availability of the pollutants in multi-contaminated soils.
    Vázquez S; Carpena RO; Bernal MP
    Environ Pollut; 2008 Mar; 152(2):373-9. PubMed ID: 17655992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing cadmium extraction potential of Brassica napus: Effect of rhizosphere interactions.
    Li L; Zou D; Zeng X; Zhang L; Zhou Y; Anastopoulos I; Wang A; Zeng Q; Xiao Z
    J Environ Manage; 2021 Apr; 284():112056. PubMed ID: 33548754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulating behaviour of Lupinus albus L. growing in a normal and a decalcified calcic luvisol polluted with Zn.
    Pastor J; Hernández AJ; Prieto N; Fernández-Pascual M
    J Plant Physiol; 2003 Dec; 160(12):1457-65. PubMed ID: 14717438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intercropping of Narrow-Leafed Lupin (
    Andersen IKL; Fomsgaard IS; Rasmussen J
    J Agric Food Chem; 2024 Jan; 72(1):108-115. PubMed ID: 38146912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal solubility and speciation in the rhizosphere of Lupinus albus cluster roots.
    Dessureault-Rompré J; Nowack B; Schulin R; Tercier-Waeber ML; Luster J
    Environ Sci Technol; 2008 Oct; 42(19):7146-51. PubMed ID: 18939539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots.
    Fresno T; Peñalosa JM; Santner J; Puschenreiter M; Prohaska T; Moreno-Jiménez E
    Environ Pollut; 2016 Sep; 216():215-222. PubMed ID: 27263113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth.
    Castaldi P; Santona L; Melis P
    Chemosphere; 2005 Jul; 60(3):365-71. PubMed ID: 15924955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trace elements in agroecosystems and impacts on the environment.
    He ZL; Yang XE; Stoffella PJ
    J Trace Elem Med Biol; 2005; 19(2-3):125-40. PubMed ID: 16325528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of cobalt-polluted soil after application of selected substances and using oat (Avena sativa L.).
    Kosiorek M; Wyszkowski M
    Environ Sci Pollut Res Int; 2019 Jun; 26(16):16762-16780. PubMed ID: 30997643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and chemical changes in the rhizosphere of black oat (Avena strigosa) grown in soils contaminated with copper.
    De Conti L; Ceretta CA; Tiecher TL; da Silva LOS; Tassinari A; Somavilla LM; Mimmo T; Cesco S; Brunetto G
    Ecotoxicol Environ Saf; 2018 Nov; 163():19-27. PubMed ID: 30031941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of white lupin in the removal of mercury from contaminated soils: soil and hydroponic experiments.
    Zornoza P; Millán R; Sierra MJ; Seco A; Esteban E
    J Environ Sci (China); 2010; 22(3):421-7. PubMed ID: 20614785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in Soil Phosphorus Availability and Microbial Community Structures in Rhizospheres of Oilseed Rapes Induced by Intercropping with White Lupins.
    Chen S; Yang D; Wei Y; He L; Li Z; Yang S
    Microorganisms; 2023 Jan; 11(2):. PubMed ID: 36838291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essential and non-essential elements in white lupin (
    Cammilleri G; Calabrese V; Vella A; Macaluso A; Bacchi E; Pantano L; Galluzzo FG; Oddo A; Giangrosso G; Ferrantelli V; Brunone M
    Nat Prod Res; 2024; 38(1):164-168. PubMed ID: 35921531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.