These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26940261)

  • 21. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium.
    Hu Y; Nan Z; Jin C; Wang N; Luo H
    Int J Phytoremediation; 2014; 16(5):482-95. PubMed ID: 24912230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iron toxicity resistance strategies in tropical grasses: The role of apoplastic radicular barriers.
    Siqueira-Silva AI; Rios CO; Pereira EG
    J Environ Sci (China); 2019 Apr; 78():257-266. PubMed ID: 30665644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytoremediation of strontium contaminated soil by Sorghum bicolor (L.) Moench and soil microbial community-level physiological profiles (CLPPs).
    Wang X; Chen C; Wang J
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7668-7678. PubMed ID: 28124267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lead accumulation potential in Acacia victoria.
    Mahdavi A; Khermandar K; Asbchin SA; Tabaraki R
    Int J Phytoremediation; 2014; 16(6):582-92. PubMed ID: 24912244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of acute gamma irradiation on physiological traits and flavonoid accumulation of Centella asiatica.
    Moghaddam SS; Jaafar H; Ibrahim R; Rahmat A; Aziz MA; Philip E
    Molecules; 2011 Jun; 16(6):4994-5007. PubMed ID: 21694666
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of iron plaque on lead translocation in soil-Carex cinerascens kukenth. system.
    Liu C; Gong X; Chen C; Yang J; Xu S
    Int J Phytoremediation; 2016; 18(1):1-9. PubMed ID: 26364868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytoextraction of HG by parsley (Petroselinum crispum) and its growth responses.
    Bibi A; Farooq U; Naz S; Khan A; Khan S; Sarwar R; Mahmood Q; Alam A; Mirza N
    Int J Phytoremediation; 2016; 18(4):354-7. PubMed ID: 26514060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Centelloside accumulation in leaves of Centella asiatica is determined by resource partitioning between primary and secondary metabolism while influenced by supply levels of either nitrogen, phosphorus or potassium.
    Müller V; Lankes C; Zimmermann BF; Noga G; Hunsche M
    J Plant Physiol; 2013 Sep; 170(13):1165-75. PubMed ID: 23608744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nickel phytoremediation potential of the Mediterranean Alyssoides utriculata (L.) Medik.
    Roccotiello E; Serrano HC; Mariotti MG; Branquinho C
    Chemosphere; 2015 Jan; 119():1372-1378. PubMed ID: 24630460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uptake of (14)C-atropine and/or its transformation products from soil by wheat (Triticum aestivum var Kronjet) and their translocation to shoots.
    Jandrić Z; Rathor MN; Chhem-Kieth S; Adu-Gyamfi J; Mayr L; Resch C; Bado S; Švarc-Gajić J; Cannavan A
    J Environ Sci Health B; 2013; 48(12):1034-42. PubMed ID: 24007480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tolerance of Ornamental Succulent Plant Crown of Thorns (Euphorbia milli) to Chromium and its Remediation.
    Ramana S; Biswas AK; Singh AB; Ajay ; Ahirwar NK; Subba Rao A
    Int J Phytoremediation; 2015; 17(1-6):363-8. PubMed ID: 25409249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of lipid metabolism by Centella asiatica in oxidative stress rats.
    Hussin M; Hamid AA; Mohamad S; Saari N; Bakar F; Dek SP
    J Food Sci; 2009 Mar; 74(2):H72-8. PubMed ID: 19323754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals.
    Cheraghi M; Lorestani B; Khorasani N; Yousefi N; Karami M
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1133-41. PubMed ID: 19319488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phytoaccumulation and tolerance of Riccinus communis L. to nickel.
    Adhikari T; Kumar A
    Int J Phytoremediation; 2012; 14(5):481-92. PubMed ID: 22567726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phytostabilization of iron ore tailings through Calophyllum inophyllum L.
    Chaturvedi N; Dhal NK; Reddy PS
    Int J Phytoremediation; 2012 Dec; 14(10):996-1009. PubMed ID: 22908660
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils.
    Lin W; Xiao T; Wu Y; Ao Z; Ning Z
    Chemosphere; 2012 Feb; 86(8):837-42. PubMed ID: 22154155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss: two contrasting ecotypes.
    Manousaki E; Galanaki K; Papadimitriou L; Kalogerakis N
    Int J Phytoremediation; 2014; 16(7-12):755-69. PubMed ID: 24933883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Variation of tolerance and accumulation to excess iron in 24 willow clones: Implications for phytoextraction.
    Yang W; Zhao F; Ding Z; Wang Y; Zhang X; Zhu Z; Yang X
    Int J Phytoremediation; 2018; 20(13):1284-1291. PubMed ID: 30666895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remediation of lead and cadmium-contaminated soils.
    Salama AK; Osman KA; Gouda NA
    Int J Phytoremediation; 2016; 18(4):364-7. PubMed ID: 26515924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.