BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26940428)

  • 1. Metabolite Modulation in Human Plasma in the Early Phase of Acclimatization to Hypobaric Hypoxia.
    Liao WT; Liu B; Chen J; Cui JH; Gao YX; Liu FY; Xu G; Sun BD; Zhang EL; Yuan ZB; Zhang G; Gao YQ
    Sci Rep; 2016 Mar; 6():22589. PubMed ID: 26940428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploratory proteomic analysis of hypobaric hypoxia and acute mountain sickness in humans.
    Julian CG; Subudhi AW; Hill RC; Wilson MJ; Dimmen AC; Hansen KC; Roach RC
    J Appl Physiol (1985); 2014 Apr; 116(7):937-44. PubMed ID: 24265281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Omics" of High Altitude Biology: A Urinary Metabolomics Biomarker Study of Rats Under Hypobaric Hypoxia.
    Koundal S; Gandhi S; Kaur T; Mazumder A; Khushu S
    OMICS; 2015 Dec; 19(12):757-65. PubMed ID: 26669710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of susceptibility to acute mountain sickness by SaO2 values during short-term exposure to hypoxia.
    Burtscher M; Flatz M; Faulhaber M
    High Alt Med Biol; 2004; 5(3):335-40. PubMed ID: 15453999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AltitudeOmics: cerebral autoregulation during ascent, acclimatization, and re-exposure to high altitude and its relation with acute mountain sickness.
    Subudhi AW; Fan JL; Evero O; Bourdillon N; Kayser B; Julian CG; Lovering AT; Panerai RB; Roach RC
    J Appl Physiol (1985); 2014 Apr; 116(7):724-9. PubMed ID: 24371013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations of Human Plasma Proteome Profile on Adaptation to High-Altitude Hypobaric Hypoxia.
    Du X; Zhang R; Ye S; Liu F; Jiang P; Yu X; Xu J; Ma L; Cao H; Shen Y; Lin F; Wang Z; Li C
    J Proteome Res; 2019 May; 18(5):2021-2031. PubMed ID: 30908922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute mountain sickness, chemosensitivity, and cardiorespiratory responses in humans exposed to hypobaric and normobaric hypoxia.
    Richard NA; Sahota IS; Widmer N; Ferguson S; Sheel AW; Koehle MS
    J Appl Physiol (1985); 2014 Apr; 116(7):945-52. PubMed ID: 23823153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in cardiac autonomic activity during a passive 8 hour acute exposure to 5 500 m normobaric hypoxia are not related to the development of acute mountain sickness.
    Wille M; Mairer K; Gatterer H; Philippe M; Faulhaber M; Burtscher M
    Int J Sports Med; 2012 Mar; 33(3):186-91. PubMed ID: 22290324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sleeping in moderate hypoxia at home for prevention of acute mountain sickness (AMS): a placebo-controlled, randomized double-blind study.
    Dehnert C; Böhm A; Grigoriev I; Menold E; Bärtsch P
    Wilderness Environ Med; 2014 Sep; 25(3):263-71. PubMed ID: 24931591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 'Ome' on the range: update on high-altitude acclimatization/adaptation and disease.
    Luo Y; Wang Y; Lu H; Gao Y
    Mol Biosyst; 2014 Nov; 10(11):2748-55. PubMed ID: 25099339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevated plasma S100B levels in high altitude hypobaric hypoxia do not correlate with acute mountain sickness.
    Winter CD; Whyte TR; Cardinal J; Rose SE; O'Rourke PK; Kenny RG
    Neurol Res; 2014 Sep; 36(9):779-85. PubMed ID: 24620985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypobaric Hypoxia Causes Elevated Thrombin Generation Mediated by FVIII that is Balanced by Decreased Platelet Activation.
    Kicken CH; Ninivaggi M; Konings J; Moorlag M; Huskens D; Remijn JA; Bloemen S; Lancé MD; De Laat B
    Thromb Haemost; 2018 May; 118(5):883-892. PubMed ID: 29614518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The role of hypoxic response and breath holding at sea level in prediction of acute mountain sickness].
    Huang QY; Gao YQ; Mou XB; Zhou QQ; Jiang CH; Zhai Y
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2004 May; 20(2):142-5. PubMed ID: 21166198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac biomarkers at high altitude.
    Mellor A; Boos C; Holdsworth D; Begley J; Hall D; Lumley A; Burnett A; Hawkins A; O'Hara J; Ball S; Woods D
    High Alt Med Biol; 2014 Dec; 15(4):452-8. PubMed ID: 25330333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Explore potential plasma biomarkers of acute respiratory distress syndrome (ARDS) using GC-MS metabolomics analysis.
    Lin S; Yue X; Wu H; Han TL; Zhu J; Wang C; Lei M; Zhang M; Liu Q; Xu F
    Clin Biochem; 2019 Apr; 66():49-56. PubMed ID: 30779905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic changes of plasma metabolites in pigs with GalN-induced acute liver failure using GC-MS and UPLC-MS.
    Chen E; Lu J; Chen D; Zhu D; Wang Y; Zhang Y; Zhou N; Wang J; Li J; Li L
    Biomed Pharmacother; 2017 Sep; 93():480-489. PubMed ID: 28668767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the visual analog score (VAS) to assess acute mountain sickness (AMS) in a hypobaric chamber.
    Wu J; Chen Y; Luo Y
    PLoS One; 2014; 9(11):e113376. PubMed ID: 25405765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of altitude pre-acclimatization on acute mountain sickness during reexposure.
    Lyons TP; Muza SR; Rock PB; Cymerman A
    Aviat Space Environ Med; 1995 Oct; 66(10):957-62. PubMed ID: 8526832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three plasma metabolite signatures for diagnosing high altitude pulmonary edema.
    Guo L; Tan G; Liu P; Li H; Tang L; Huang L; Ren Q
    Sci Rep; 2015 Oct; 5():15126. PubMed ID: 26459926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of rapid ascent to high altitude on autonomic cardiovascular modulation.
    Chen YC; Lin FC; Shiao GM; Chang SC
    Am J Med Sci; 2008 Sep; 336(3):248-53. PubMed ID: 18794620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.