BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26940516)

  • 21. The H+-ATPase from chloroplasts: effect of different reconstitution procedures on ATP synthesis activity and on phosphate dependence of ATP synthesis.
    Grotjohann I; Gräber P
    Biochim Biophys Acta; 2002 Dec; 1556(2-3):208-16. PubMed ID: 12460678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perfect chemomechanical coupling of F
    Soga N; Kimura K; Kinosita K; Yoshida M; Suzuki T
    Proc Natl Acad Sci U S A; 2017 May; 114(19):4960-4965. PubMed ID: 28442567
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulatory mechanisms of proton-translocating F(O)F (1)-ATP synthase.
    Feniouk BA; Yoshida M
    Results Probl Cell Differ; 2008; 45():279-308. PubMed ID: 18026702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions of gamma T273 and gamma E275 with the beta subunit PSAV segment that links the gamma subunit to the catalytic site Walker homology B aspartate are important to the function of Escherichia coli F1F0 ATP synthase.
    Boltz KW; Frasch WD
    Biochemistry; 2005 Jul; 44(27):9497-506. PubMed ID: 15996104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of proton pumping efficiency in bacterial ATP synthases.
    Turina P; Rebecchi A; D'Alessandro M; Anefors S; Melandri BA
    Biochim Biophys Acta; 2006; 1757(5-6):320-5. PubMed ID: 16765908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ATP hydrolysis in ATP synthases can be differently coupled to proton transport and modulated by ADP and phosphate: a structure based model of the mechanism.
    D'Alessandro M; Melandri BA
    Biochim Biophys Acta; 2010; 1797(6-7):755-62. PubMed ID: 20230778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics.
    Nakanishi-Matsui M; Sekiya M; Futai M
    IUBMB Life; 2013 Mar; 65(3):247-54. PubMed ID: 23441040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport protons do not participate in ATP synthesis/hydrolysis at the nucleotide binding site of the H(+)-ATPase from chloroplasts.
    Labahn A; Gräber P
    FEBS Lett; 1992 Nov; 313(2):177-80. PubMed ID: 1330704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH-dependent Ca2+ binding to the F0 c-subunit affects proton translocation of the ATP synthase from Synechocystis 6803.
    Van Walraven HS; Scholts MJ; Zakharov SD; Kraayenhof R; Dilley RA
    J Bioenerg Biomembr; 2002 Dec; 34(6):455-64. PubMed ID: 12678437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic model of ATP synthase: pH dependence of the rate of ATP synthesis.
    Jain S; Nath S
    FEBS Lett; 2000 Jul; 476(3):113-7. PubMed ID: 10913596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic Bacillus sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potential.
    Meier T; Morgner N; Matthies D; Pogoryelov D; Keis S; Cook GM; Dimroth P; Brutschy B
    Mol Microbiol; 2007 Sep; 65(5):1181-92. PubMed ID: 17645441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the activation mechanism of the H(+)-ATP synthase and unusual thermodynamic properties in the alkalophilic cyanobacterium Spirulina platensis.
    Bakels RH; van Walraven HS; Krab K; Scholts MJ; Kraayenhof R
    Eur J Biochem; 1993 May; 213(3):957-64. PubMed ID: 8504834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proton transport-coupled unisite catalysis by the H(+)-ATPase from chloroplasts.
    Gräber P; Labahn A
    J Bioenerg Biomembr; 1992 Oct; 24(5):493-7. PubMed ID: 1331040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ATP synthesis and hydrolysis of the ATP-synthase from Micrococcus luteus regulated by an inhibitor subunit and membrane energization.
    Grüber G; Godovac-Zimmermann J; Nawroth T
    Biochim Biophys Acta; 1994 Jun; 1186(1-2):43-51. PubMed ID: 8011668
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deltapsi and DeltapH are equivalent driving forces for proton transport through isolated F(0) complexes of ATP synthases.
    Wiedenmann A; Dimroth P; von Ballmoos C
    Biochim Biophys Acta; 2008 Oct; 1777(10):1301-10. PubMed ID: 18619941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monte Carlo simulation from proton slip to "coupled" proton flow in ATP synthase based on the bi-site mechanism.
    Qian J; Liang J
    Biosystems; 2011 Sep; 105(3):233-7. PubMed ID: 21664229
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mechano-chemiosmotic model for the coupling of electron and proton transfer to ATP synthesis in energy-transforming membranes: a personal perspective.
    Kasumov EA; Kasumov RE; Kasumova IV
    Photosynth Res; 2015 Jan; 123(1):1-22. PubMed ID: 25266924
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Steady state kinetics of ATP synthesis and hydrolysis catalyzed by reconstituted chloroplast coupling factor.
    Dewey TG; Hammes GG
    J Biol Chem; 1981 Sep; 256(17):8941-6. PubMed ID: 6455435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subunit movement in individual H+-ATP synthases during ATP synthesis and hydrolysis revealed by fluorescence resonance energy transfer.
    Börsch M; Gräber P
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):878-82. PubMed ID: 16042618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing energy coupling in the yeast plasma membrane H+-ATPase with acetyl phosphate.
    Wang G; Perlin DS
    Arch Biochem Biophys; 1997 Aug; 344(2):309-15. PubMed ID: 9264544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.