BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1011 related articles for article (PubMed ID: 26940649)

  • 1. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative analysis of methods for predicting clinical outcomes using high-dimensional genomic datasets.
    Jiang X; Cai B; Xue D; Lu X; Cooper GF; Neapolitan RE
    J Am Med Inform Assoc; 2014 Oct; 21(e2):e312-9. PubMed ID: 24737607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. hCKSAAP_UbSite: improved prediction of human ubiquitination sites by exploiting amino acid pattern and properties.
    Chen Z; Zhou Y; Song J; Zhang Z
    Biochim Biophys Acta; 2013 Aug; 1834(8):1461-7. PubMed ID: 23603789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational identification of ubiquitylation sites from protein sequences.
    Tung CW; Ho SY
    BMC Bioinformatics; 2008 Jul; 9():310. PubMed ID: 18625080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of O-glycosylation sites based on multi-scale composition of amino acids and feature selection.
    Chen Y; Zhou W; Wang H; Yuan Z
    Med Biol Eng Comput; 2015 Jun; 53(6):535-44. PubMed ID: 25752770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote homology detection incorporating the context of physicochemical properties.
    Bedoya O; Tischer I
    Comput Biol Med; 2014 Feb; 45():43-50. PubMed ID: 24480162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. predCar-site: Carbonylation sites prediction in proteins using support vector machine with resolving data imbalanced issue.
    Hasan MA; Li J; Ahmad S; Molla MK
    Anal Biochem; 2017 May; 525():107-113. PubMed ID: 28286168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using amino acid physicochemical distance transformation for fast protein remote homology detection.
    Liu B; Wang X; Chen Q; Dong Q; Lan X
    PLoS One; 2012; 7(9):e46633. PubMed ID: 23029559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OH-PRED: prediction of protein hydroxylation sites by incorporating adapted normal distribution bi-profile Bayes feature extraction and physicochemical properties of amino acids.
    Jia CZ; He WY; Yao YH
    J Biomol Struct Dyn; 2017 Mar; 35(4):829-835. PubMed ID: 26957000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features.
    Li L; Luo Q; Xiao W; Li J; Zhou S; Li Y; Zheng X; Yang H
    J Bioinform Comput Biol; 2017 Feb; 15(1):1650025. PubMed ID: 27411307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutli-Features Prediction of Protein Translational Modification Sites.
    Bao W; Yuan CA; Zhang Y; Han K; Nandi AK; Honig B; Huang DS
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(5):1453-1460. PubMed ID: 28961121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can-Evo-Ens: Classifier stacking based evolutionary ensemble system for prediction of human breast cancer using amino acid sequences.
    Ali S; Majid A
    J Biomed Inform; 2015 Apr; 54():256-69. PubMed ID: 25617669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting protein-protein interactions between human and hepatitis C virus via an ensemble learning method.
    Emamjomeh A; Goliaei B; Zahiri J; Ebrahimpour R
    Mol Biosyst; 2014 Dec; 10(12):3147-54. PubMed ID: 25230581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Computational Method for Detecting DNA Methylation Sites with DNA Sequence Information and Physicochemical Properties.
    Pan G; Jiang L; Tang J; Guo F
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29419752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites.
    Al-Barakati HJ; McConnell EW; Hicks LM; Poole LB; Newman RH; Kc DB
    Sci Rep; 2018 Jul; 8(1):11288. PubMed ID: 30050050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of ubiquitination sites by using the composition of k-spaced amino acid pairs.
    Chen Z; Chen YZ; Wang XF; Wang C; Yan RX; Zhang Z
    PLoS One; 2011; 6(7):e22930. PubMed ID: 21829559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis and prediction of human acetylation using a cascade classifier based on support vector machine.
    Ning Q; Yu M; Ji J; Ma Z; Zhao X
    BMC Bioinformatics; 2019 Jun; 20(1):346. PubMed ID: 31208321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classifying noisy protein sequence data: a case study of immunoglobulin light chains.
    Yu C; Zavaljevski N; Stevens FJ; Yackovich K; Reifman J
    Bioinformatics; 2005 Jun; 21 Suppl 1():i495-501. PubMed ID: 15961496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.