BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26940741)

  • 1. High glucose suppresses embryonic stem cell differentiation into neural lineage cells.
    Yang P; Shen WB; Reece EA; Chen X; Yang P
    Biochem Biophys Res Commun; 2016 Apr; 472(2):306-12. PubMed ID: 26940741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoamine oxidase A regulates neural differentiation of murine embryonic stem cells.
    Wang ZQ; Chen K; Ying QL; Li P; Shih JC
    J Neural Transm (Vienna); 2011 Jul; 118(7):997-1001. PubMed ID: 21607742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Notch signaling maintains neural rosette polarity.
    Main H; Radenkovic J; Jin SB; Lendahl U; Andersson ER
    PLoS One; 2013; 8(5):e62959. PubMed ID: 23675446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling human CNS injury with human neural stem cells in 2- and 3-Dimensional cultures.
    Vagaska B; Gillham O; Ferretti P
    Sci Rep; 2020 Apr; 10(1):6785. PubMed ID: 32321995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-Optimized Layered Double Hydroxide Nanoparticles Promote Neural Progenitor Cells Differentiation of Embryonic Stem Cells Through the Regulation of M
    Bai Y; Zhu Y; He X; Huang R; Xu X; Yang L; Wang Z; Zhu R
    Int J Nanomedicine; 2024; 19():4181-4197. PubMed ID: 38766656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UTX/KDM6A suppresses AP-1 and a gliogenesis program during neural differentiation of human pluripotent stem cells.
    Xu B; Mulvey B; Salie M; Yang X; Matsui Y; Nityanandam A; Fan Y; Peng JC
    Epigenetics Chromatin; 2020 Sep; 13(1):38. PubMed ID: 32977832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NPTX1 regulates neural lineage specification from human pluripotent stem cells.
    Boles NC; Hirsch SE; Le S; Corneo B; Najm F; Minotti AP; Wang Q; Lotz S; Tesar PJ; Fasano CA
    Cell Rep; 2014 Feb; 6(4):724-36. PubMed ID: 24529709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Potential Role of Thyroid Hormone Therapy in Neural Progenitor Cell Differentiation and Its Impact on Neurodevelopmental Disorders.
    Salloum-Asfar S; Shin KC; Taha RZ; Khattak S; Park Y; Abdulla SA
    Mol Neurobiol; 2024 Jun; 61(6):3330-3342. PubMed ID: 37991699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Keep calm and make neurons: The effects of glucocorticoids on human cortical neurogenesis.
    Fernández V; Borrell V
    Neuron; 2024 May; 112(9):1373-1375. PubMed ID: 38697018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From Vessels to Neurons-The Role of Hypoxia Pathway Proteins in Embryonic Neurogenesis.
    Stepien BK; Wielockx B
    Cells; 2024 Apr; 13(7):. PubMed ID: 38607059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programming of neural cells by (endo)cannabinoids: from physiological rules to emerging therapies.
    Maccarrone M; Guzmán M; Mackie K; Doherty P; Harkany T
    Nat Rev Neurosci; 2014 Dec; 15(12):786-801. PubMed ID: 25409697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution live imaging of cell behavior in the developing neuroepithelium.
    Das RM; Wilcock AC; Swedlow JR; Storey KG
    J Vis Exp; 2012 Apr; (62):. PubMed ID: 22525126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and Phenotypic Characterization of Adult Neurogenesis.
    Kuhn HG; Eisch AJ; Spalding K; Peterson DA
    Cold Spring Harb Perspect Biol; 2016 Mar; 8(3):a025981. PubMed ID: 26931327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Species-specific pace of development is associated with differences in protein stability.
    Rayon T; Stamataki D; Perez-Carrasco R; Garcia-Perez L; Barrington C; Melchionda M; Exelby K; Lazaro J; Tybulewicz VLJ; Fisher EMC; Briscoe J
    Science; 2020 Sep; 369(6510):. PubMed ID: 32943498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Transcriptomic Dataset of Embryonic Murine Telencephalon.
    Ochi S; Manabe S; Kikkawa T; Ebrahimiazar S; Kimura R; Yoshizaki K; Osumi N
    Sci Data; 2024 Jun; 11(1):586. PubMed ID: 38839806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide dismutase 2 overexpression alleviates maternal diabetes-induced neural tube defects, restores mitochondrial function and suppresses cellular stress in diabetic embryopathy.
    Zhong J; Xu C; Gabbay-Benziv R; Lin X; Yang P
    Free Radic Biol Med; 2016 Jul; 96():234-44. PubMed ID: 27130031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis.
    Wu Y; Reece EA; Zhong J; Dong D; Shen WB; Harman CR; Yang P
    Am J Obstet Gynecol; 2016 Sep; 215(3):366.e1-366.e10. PubMed ID: 27038779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The green tea polyphenol EGCG alleviates maternal diabetes-induced neural tube defects by inhibiting DNA hypermethylation.
    Zhong J; Xu C; Reece EA; Yang P
    Am J Obstet Gynecol; 2016 Sep; 215(3):368.e1-368.e10. PubMed ID: 26979632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High glucose suppresses embryonic stem cell differentiation into cardiomyocytes : High glucose inhibits ES cell cardiogenesis.
    Yang P; Chen X; Kaushal S; Reece EA; Yang P
    Stem Cell Res Ther; 2016 Dec; 7(1):187. PubMed ID: 27938398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maternal diabetes and high glucose in vitro trigger Sca1
    Yang P; Yang WW; Chen X; Kaushal S; Dong D; Shen WB
    Biochem Biophys Res Commun; 2017 Jan; 482(4):575-581. PubMed ID: 27856257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.