These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 26940771)
1. The relative abundance of hemocyte types in a polyphagous moth larva depends on diet. Vogelweith F; Moret Y; Monceau K; Thiéry D; Moreau J J Insect Physiol; 2016 May; 88():33-9. PubMed ID: 26940771 [TBL] [Abstract][Full Text] [Related]
2. Ultrastructural and functional characterization of circulating hemocytes from Plutella xylostella larva: cell types and their role in phagocytosis. Huang F; Yang YY; Shi M; Li JY; Chen ZQ; Chen FS; Chen XX Tissue Cell; 2010 Dec; 42(6):360-4. PubMed ID: 20817244 [TBL] [Abstract][Full Text] [Related]
3. Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella. Ibrahim AM; Kim Y J Insect Physiol; 2006 Sep; 52(9):943-50. PubMed ID: 16872627 [TBL] [Abstract][Full Text] [Related]
4. The competence of hemocyte immunity in the armyworm Mythimna separata larvae to sublethal hexaflumuron exposure. Huang Q; Zhang L; Yang C; Yun X; He Y Pestic Biochem Physiol; 2016 Jun; 130():31-38. PubMed ID: 27155481 [TBL] [Abstract][Full Text] [Related]
5. A continuous cell line, SYSU-OfHe-C, from hemocytes of Ostrinia furnacalis possesses immune ability depending on the presence of larval plasma. Hu J; Feng X; Yang Z; Chen Z; Zhang W Dev Comp Immunol; 2014 Jul; 45(1):10-20. PubMed ID: 24513271 [TBL] [Abstract][Full Text] [Related]
6. Food-mediated modulation of immunity in a phytophagous insect: An effect of nutrition rather than parasitic contamination. Vogelweith F; Moreau J; Thiéry D; Moret Y J Insect Physiol; 2015 Jun; 77():55-61. PubMed ID: 25913569 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the hemocytes in Larvae of Protaetia brevitarsis seulensis: involvement of granulocyte-mediated phagocytosis. Kwon H; Bang K; Cho S PLoS One; 2014; 9(8):e103620. PubMed ID: 25083702 [TBL] [Abstract][Full Text] [Related]
8. Circulating hemocytes from larvae of Melipona scutellaris (Hymenoptera, Apidae, Meliponini): cell types and their role in phagocytosis. Amaral IM; Moreira Neto JF; Pereira GB; Franco MB; Beletti ME; Kerr WE; Bonetti AM; Ueira-Vieira C Micron; 2010 Feb; 41(2):123-9. PubMed ID: 19914078 [TBL] [Abstract][Full Text] [Related]
9. Circulating hemocytes from larvae and adults of Carabus (Chaetocarabus) lefebvrei Dejean 1826 (Coleoptera, Carabidae): cell types and their role in phagocytosis after in vivo artificial non-self-challenge. Giglio A; Battistella S; Talarico FF; Brandmayr TZ; Giulianini PG Micron; 2008 Jul; 39(5):552-8. PubMed ID: 17825571 [TBL] [Abstract][Full Text] [Related]
10. Ultrastructure of the hemocytes of Cetonischema aeruginosa larvae (Coleoptera, Scarabaeidae): involvement of both granulocytes and oenocytoids in in vivo phagocytosis. Giulianini PG; Bertolo F; Battistella S; Amirante GA Tissue Cell; 2003 Aug; 35(4):243-51. PubMed ID: 12921707 [TBL] [Abstract][Full Text] [Related]
11. Characterization of cell clusters in larval hemolymph of the cabbage armyworm Mamestra brassicae and their role in maintenance of hemocyte populations. Mangalika PR; Kawamoto T; Takahashi-Nakaguchi A; Iwabuchi K J Insect Physiol; 2010 Mar; 56(3):314-23. PubMed ID: 19913022 [TBL] [Abstract][Full Text] [Related]
12. Effects of gibberellic acid on hemocytes of Galleria mellonella L. (Lepidoptera: Pyralidae). Altuntaş H; Kılıç AY; Uçkan F; Ergin E Environ Entomol; 2012 Jun; 41(3):688-96. PubMed ID: 22732628 [TBL] [Abstract][Full Text] [Related]
14. Defense strategies used by two sympatric vineyard moth pests. Vogelweith F; Thiéry D; Moret Y; Colin E; Motreuil S; Moreau J J Insect Physiol; 2014 May; 64():54-61. PubMed ID: 24662468 [TBL] [Abstract][Full Text] [Related]
15. Follow-up of protein release from Pseudoplusia includens hemocytes: a first step toward identification of factors mediating encapsulation in insects. Loret SM; Strand MR Eur J Cell Biol; 1998 Jun; 76(2):146-55. PubMed ID: 9696355 [TBL] [Abstract][Full Text] [Related]
16. Two hemocyte lineages exist in silkworm larval hematopoietic organ. Nakahara Y; Kanamori Y; Kiuchi M; Kamimura M PLoS One; 2010 Jul; 5(7):e11816. PubMed ID: 20676370 [TBL] [Abstract][Full Text] [Related]
17. Cellular immune responses of the yellow peach moth, Conogethes punctiferalis (Lepidoptera: Crambidae), to the entomopathogenic fungus, Beauveria bassiana (Hypocreales: Cordycipitaceae). Li S; Liu F; Kang Z; Li X; Lu Y; Li Q; Pang Y; Zheng F; Yin X J Invertebr Pathol; 2022 Oct; 194():107826. PubMed ID: 36075444 [TBL] [Abstract][Full Text] [Related]
18. Reactions of hemocytes of immune and non-immune Galleria mellonella larvae to Proteus mirabilis. Morton DB; Dunphy GB; Chadwick JS Dev Comp Immunol; 1987; 11(1):47-55. PubMed ID: 3109970 [TBL] [Abstract][Full Text] [Related]
19. Hemocyte types and total and differential counts in unparasitized and parasitized Anastrepha obliqua (Diptera, Tephritidae) larvae. Silva JE; Boleli IC; Simões ZL Braz J Biol; 2002 Nov; 62(4A):689-99. PubMed ID: 12659019 [TBL] [Abstract][Full Text] [Related]
20. Venom from the endoparasitic wasp Pimpla hypochondriaca adversely affects the morphology, viability, and immune function of hemocytes from larvae of the tomato moth, Lacanobia oleracea. Richards EH; Parkinson NM J Invertebr Pathol; 2000 Jul; 76(1):33-42. PubMed ID: 10963401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]