BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 26940822)

  • 1. A Fractional Order Recovery SIR Model from a Stochastic Process.
    Angstmann CN; Henry BI; McGann AV
    Bull Math Biol; 2016 Mar; 78(3):468-99. PubMed ID: 26940822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationships between message passing, pairwise, Kermack-McKendrick and stochastic SIR epidemic models.
    Wilkinson RR; Ball FG; Sharkey KJ
    J Math Biol; 2017 Dec; 75(6-7):1563-1590. PubMed ID: 28409223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elementary proof of convergence to the mean-field model for the SIR process.
    Armbruster B; Beck E
    J Math Biol; 2017 Aug; 75(2):327-339. PubMed ID: 28004143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discrete stochastic metapopulation model with arbitrarily distributed infectious period.
    Hernandez-Ceron N; Chavez-Casillas JA; Feng Z
    Math Biosci; 2015 Mar; 261():74-82. PubMed ID: 25550286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability in a Community-Structured SIS Epidemiological Model.
    Hiebeler DE; Rier RM; Audibert J; LeClair PJ; Webber A
    Bull Math Biol; 2015 Apr; 77(4):698-712. PubMed ID: 25185749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaussian process approximations for fast inference from infectious disease data.
    Buckingham-Jeffery E; Isham V; House T
    Math Biosci; 2018 Jul; 301():111-120. PubMed ID: 29471011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple Approximations for Epidemics with Exponential and Fixed Infectious Periods.
    Fowler AC; Hollingsworth TD
    Bull Math Biol; 2015 Aug; 77(8):1539-55. PubMed ID: 26337289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of an ultra-discrete SIR epidemic model with time delay.
    Sekiguchi M; Ishiwata E; Nakata Y
    Math Biosci Eng; 2018 Jun; 15(3):653-666. PubMed ID: 30380324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic SIR epidemics in a population with households and schools.
    Ouboter T; Meester R; Trapman P
    J Math Biol; 2016 Apr; 72(5):1177-93. PubMed ID: 26070348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling a SI epidemic with stochastic transmission: hyperbolic incidence rate.
    Christen A; Maulén-Yañez MA; González-Olivares E; Curé M
    J Math Biol; 2018 Mar; 76(4):1005-1026. PubMed ID: 28752421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Susceptible-infectious-recovered models revisited: from the individual level to the population level.
    Magal P; Ruan S
    Math Biosci; 2014 Apr; 250():26-40. PubMed ID: 24530806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis.
    Szabó-Solticzky A; Berthouze L; Kiss IZ; Simon PL
    J Math Biol; 2016 Apr; 72(5):1153-76. PubMed ID: 26063525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical analysis of a power-law form time dependent vector-borne disease transmission model.
    Sardar T; Saha B
    Math Biosci; 2017 Jun; 288():109-123. PubMed ID: 28274854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SIS Epidemic Propagation on Hypergraphs.
    Bodó Á; Katona GY; Simon PL
    Bull Math Biol; 2016 Apr; 78(4):713-735. PubMed ID: 27033348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous and discrete SIR-models with spatial distributions.
    Paeng SH; Lee J
    J Math Biol; 2017 Jun; 74(7):1709-1727. PubMed ID: 27796478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infection-age structured epidemic models with behavior change or treatment.
    Hyman JM; Li J
    J Biol Dyn; 2007 Jan; 1(1):109-31. PubMed ID: 22880616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Front dynamics in fractional-order epidemic models.
    Hanert E; Schumacher E; Deleersnijder E
    J Theor Biol; 2011 Jun; 279(1):9-16. PubMed ID: 21420979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of assumptions on generation time distributions in epidemic models.
    Svensson Å
    Math Biosci; 2015 Dec; 270(Pt A):81-9. PubMed ID: 26477379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex Dynamical Behaviour in an Epidemic Model with Control.
    Vyska M; Gilligan C
    Bull Math Biol; 2016 Nov; 78(11):2212-2227. PubMed ID: 27757705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Network Epidemic Model with Preventive Rewiring: Comparative Analysis of the Initial Phase.
    Britton T; Juher D; Saldaña J
    Bull Math Biol; 2016 Dec; 78(12):2427-2454. PubMed ID: 27800576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.