These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 26940852)

  • 1. Communal nesting under climate change: fitness consequences of higher incubation temperatures for a nocturnal lizard.
    Dayananda B; Gray S; Pike D; Webb JK
    Glob Chang Biol; 2016 Jul; 22(7):2405-14. PubMed ID: 26940852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hotter nests produce hatchling lizards with lower thermal tolerance.
    Dayananda B; Murray BR; Webb JK
    J Exp Biol; 2017 Jun; 220(Pt 12):2159-2165. PubMed ID: 28615488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher incubation temperatures produce long-lasting upward shifts in cold tolerance, but not heat tolerance, of hatchling geckos.
    Abayarathna T; Murray BR; Webb JK
    Biol Open; 2019 Apr; 8(4):. PubMed ID: 31000681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consequences of Oviposition Site Choice for Geckos in Changing Environments.
    Abayarathna T; Webb JK
    Biology (Basel); 2022 Aug; 11(9):. PubMed ID: 36138760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incubation under climate warming affects learning ability and survival in hatchling lizards.
    Dayananda B; Webb JK
    Biol Lett; 2017 Mar; 13(3):. PubMed ID: 28298595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nest site selection in a southern and northern population of the velvet gecko (Amalosia lesueurii).
    Cuartas-Villa S; Webb JK
    J Therm Biol; 2021 Dec; 102():103121. PubMed ID: 34863484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of incubation temperatures on learning abilities of hatchling velvet geckos.
    Abayarathna T; Webb JK
    Anim Cogn; 2020 Jul; 23(4):613-620. PubMed ID: 32130559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. House-warming: Wild king cobra nests have thermal regimes that positively affect hatching success and hatchling size.
    Dolia J; Das A; Kelkar N
    J Therm Biol; 2023 Feb; 112():103468. PubMed ID: 36796913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of constant and fluctuating incubation temperatures on hatching success and hatchling traits in the diamondback terrapin (Malaclemys terrapin) in the context of the warming climate.
    Rowe CL; Liang D; Woodland RJ
    J Therm Biol; 2020 Feb; 88():102528. PubMed ID: 32126003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why do female lizards lay their eggs in communal nests?
    Radder RS; Shine R
    J Anim Ecol; 2007 Sep; 76(5):881-7. PubMed ID: 17714266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tropical flatback turtle (Natator depressus) embryos are resilient to the heat of climate change.
    Howard R; Bell I; Pike DA
    J Exp Biol; 2015 Oct; 218(Pt 20):3330-5. PubMed ID: 26347558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extreme developmental temperatures result in morphological abnormalities in painted turtles (Chrysemys picta): a climate change perspective.
    Telemeco RS; Warner DA; Reida MK; Janzen FJ
    Integr Zool; 2013 Jun; 8(2):197-208. PubMed ID: 23731815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change and temperature-linked hatchling mortality at a globally important sea turtle nesting site.
    Laloë JO; Cozens J; Renom B; Taxonera A; Hays GC
    Glob Chang Biol; 2017 Nov; 23(11):4922-4931. PubMed ID: 28621028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of incubation temperature on hatchling phenotypes in an oviparous lizard with prolonged egg retention: are the two main hypotheses on the evolution of viviparity compatible?
    Rodríguez-Díaz T; González F; Ji X; Braña F
    Zoology (Jena); 2010 Jan; 113(1):33-8. PubMed ID: 19836936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity in nest site choice behavior in response to hydric conditions in a reptile.
    Doody JS; McGlashan J; Fryer H; Coleman L; James H; Soennichsen K; Rhind D; Clulow S
    Sci Rep; 2020 Sep; 10(1):16048. PubMed ID: 32994522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of incubation temperature on hatching success, energy expenditure for embryonic development, and size and morphology of hatchlings in the oriental garden lizard, Calotes versicolor (Agamidae).
    Ji X; Qiu QB; Diong CH
    J Exp Zool; 2002 Jun; 292(7):649-59. PubMed ID: 12115930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of constant and fluctuating temperatures on egg survival and hatchling traits in the northern grass lizard (Takydromus septentrionalis, Lacertidae).
    Du WG; Ji X
    J Exp Zool A Comp Exp Biol; 2006 Jan; 305(1):47-54. PubMed ID: 16358269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Too hot to handle? Behavioural plasticity during incubation in a small, Australian passerine.
    Sharpe LL; Bayter C; Gardner JL
    J Therm Biol; 2021 May; 98():102921. PubMed ID: 34016345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lizards fail to plastically adjust nesting behavior or thermal tolerance as needed to buffer populations from climate warming.
    Telemeco RS; Fletcher B; Levy O; Riley A; Rodriguez-Sanchez Y; Smith C; Teague C; Waters A; Angilletta MJ; Buckley LB
    Glob Chang Biol; 2017 Mar; 23(3):1075-1084. PubMed ID: 27558698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of incubation temperature on morphology, locomotor performance, and early growth of hatchling wall lizards (Podarcis muralis).
    Braña F; Ji X
    J Exp Zool; 2000 Mar; 286(4):422-33. PubMed ID: 10684565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.