BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26940941)

  • 1. Effect of γ-PGA on the formation of collagen fibrils in vitro.
    Ding C; Zheng Z; Liu X; Li H; Zhang M
    Connect Tissue Res; 2016 Jul; 57(4):270-6. PubMed ID: 26940941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hydroxypropyl methylcellulose on collagen fibril formation in vitro.
    Ding C; Zhang M; Tian H; Li G
    Int J Biol Macromol; 2013 Jan; 52():319-26. PubMed ID: 23063428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the rheological behaviors of a polyanionic collagen fabricated with poly(γ-glutamic acid)-NHS ester.
    Ding C; Yang J; Lan F; Zheng Z; Dai L; Zhang M
    Biotechnol Appl Biochem; 2019 Jul; 66(4):564-573. PubMed ID: 31021013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of chondroitin 4-sulfate on the reconstitution of collagen fibrils in vitro.
    Tian H; Li C; Liu W; Li J; Li G
    Colloids Surf B Biointerfaces; 2013 May; 105():259-66. PubMed ID: 23376753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels.
    Hua J; Li Z; Xia W; Yang N; Gong J; Zhang J; Qiao C
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():879-92. PubMed ID: 26838920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructures and rheological properties of tilapia fish-scale collagen hydrogels with aligned fibrils fabricated under magnetic fields.
    Chen S; Hirota N; Okuda M; Takeguchi M; Kobayashi H; Hanagata N; Ikoma T
    Acta Biomater; 2011 Feb; 7(2):644-52. PubMed ID: 20851220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothermal-modulated drug delivery and magnetic relaxation based on collagen/poly(γ-glutamic acid) hydrogel.
    Cho SH; Kim A; Shin W; Heo MB; Noh HJ; Hong KS; Cho JH; Lim YT
    Int J Nanomedicine; 2017; 12():2607-2620. PubMed ID: 28408827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial activity and biocompatibility of a chitosan-gamma-poly(glutamic acid) polyelectrolyte complex hydrogel.
    Tsao CT; Chang CH; Lin YY; Wu MF; Wang JL; Han JL; Hsieh KH
    Carbohydr Res; 2010 Aug; 345(12):1774-80. PubMed ID: 20598293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Material properties and cell compatibility of poly(γ-glutamic acid)-keratin hydrogels.
    Bajestani MI; Kader S; Monavarian M; Mousavi SM; Jabbari E; Jafari A
    Int J Biol Macromol; 2020 Jan; 142():790-802. PubMed ID: 31622720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence studies on the aggregation behaviors of collagen modified with NHS-activated poly(γ-glutamic acid).
    Zhang M; Yang J; Yang Q; Huang L; Wu H; Chen L; Ding C
    Int J Biol Macromol; 2018 Jun; 112():1156-1163. PubMed ID: 29425869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(γ-glutamic acid) and poly(γ-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc.
    Antunes JC; Pereira CL; Teixeira GQ; Silva RV; Caldeira J; Grad S; Gonçalves RM; Barbosa MA
    J Mater Sci Mater Med; 2017 Jan; 28(1):6. PubMed ID: 27885573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Injectable hydrogels based on the hyaluronic acid and poly (γ-glutamic acid) for controlled protein delivery.
    Ma X; Xu T; Chen W; Qin H; Chi B; Ye Z
    Carbohydr Polym; 2018 Jan; 179():100-109. PubMed ID: 29111032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of carboxymethylcellulose on fibril formation of collagen in vitro.
    Ding C; Shi R; Zheng Z; Zhang M
    Connect Tissue Res; 2018 Jan; 59(1):66-72. PubMed ID: 28300434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The preparation of poly(γ-glutamic acid)-NHS ester as a natural cross-linking agent of collagen.
    Yang J; Ding C; Huang L; Zhang M; Chen L
    Int J Biol Macromol; 2017 Apr; 97():1-7. PubMed ID: 28057575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformations and molecular interactions of poly-γ-glutamic acid as a soluble microbial product in aqueous solutions.
    Wang LL; Chen JT; Wang LF; Wu S; Zhang GZ; Yu HQ; Ye XD; Shi QS
    Sci Rep; 2017 Oct; 7(1):12787. PubMed ID: 28986570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the Stability of Poly-γ-Glutamate Hydrogels Prepared by UV and γ-Ray Irradiation.
    Park SJ; Uyama H; Kwak MS; Sung MH
    J Microbiol Biotechnol; 2019 Jul; 29(7):1078-1082. PubMed ID: 31280528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of poly-γ-glutamic acid on hydration and structure of wheat gluten.
    Xie X; Wu X; Shen Y; Song M; Xu C; Zhang B; Aziz U; Xu X
    J Food Sci; 2020 Oct; 85(10):3214-3219. PubMed ID: 32857865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-based poly (γ-glutamic acid) hydrogels reinforced with bacterial cellulose nanofibers exhibiting superior mechanical properties and cytocompatibility.
    Dou C; Li Z; Gong J; Li Q; Qiao C; Zhang J
    Int J Biol Macromol; 2021 Feb; 170():354-365. PubMed ID: 33359810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An injectable collagen/poly(γ-glutamic acid) hydrogel as a scaffold of stem cells and α-lipoic acid for enhanced protection against renal dysfunction.
    Cho SH; Noh JR; Cho MY; Go MJ; Kim YH; Kang ES; Kim YH; Lee CH; Lim YT
    Biomater Sci; 2017 Jan; 5(2):285-294. PubMed ID: 27975097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel functional biodegradable polymer. III. The construction of poly(gamma-glutamic acid)-sulfonate hydrogel with fibroblast growth factor-2 activity.
    Matsusaki M; Serizawa T; Kishida A; Akashi M
    J Biomed Mater Res A; 2005 Jun; 73(4):485-91. PubMed ID: 15900608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.