These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26941177)

  • 1. A membrane-based microfluidic device for mechano-chemical cell manipulation.
    Ravetto A; Hoefer IE; den Toonder JM; Bouten CV
    Biomed Microdevices; 2016 Apr; 18(2):31. PubMed ID: 26941177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic cytometer based on dual photodiode detection for cell size and deformability analysis.
    Ji QQ; Du GS; van Uden MJ; Fang Q; den Toonder JM
    Talanta; 2013 Jul; 111():178-82. PubMed ID: 23622542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between transit time and mechanical properties of a cell through a stenosed microchannel.
    Ye T; Shi H; Phan-Thien N; Lim CT; Li Y
    Soft Matter; 2018 Jan; 14(4):533-545. PubMed ID: 29308825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-patterned porous substrates for cell-based assays.
    Evenou F; Di Meglio JM; Ladoux B; Hersen P
    Lab Chip; 2012 May; 12(9):1717-22. PubMed ID: 22434338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical design of a microfluidic chip for probing mechanical properties of cells.
    Ye T; Shi H; Phan-Thien N; Lim CT; Li Y
    J Biomech; 2019 Feb; 84():103-112. PubMed ID: 30591204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDMS-free microfluidic cell culture with integrated gas supply through a porous membrane of anodized aluminum oxide.
    Bunge F; van den Driesche S; Vellekoop MJ
    Biomed Microdevices; 2018 Nov; 20(4):98. PubMed ID: 30413897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip refractive index cytometry for whole-cell deformability discrimination.
    Leblanc-Hotte A; Sen Nkwe N; Chabot-Roy G; Affar EB; Lesage S; Delisle JS; Peter YA
    Lab Chip; 2019 Jan; 19(3):464-474. PubMed ID: 30570636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Microfluidic Platform for Biomechano-Stimulations on a Chip.
    Prevedello L; Michielin F; Balcon M; Savio E; Pavan P; Elvassore N
    Ann Biomed Eng; 2019 Jan; 47(1):231-242. PubMed ID: 30218223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic technique to probe cell deformability.
    Hoelzle DJ; Varghese BA; Chan CK; Rowat AC
    J Vis Exp; 2014 Sep; (91):e51474. PubMed ID: 25226269
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Cahill JF; Khalid M; Retterer ST; Walton CL; Kertesz V
    J Am Soc Mass Spectrom; 2020 Apr; 31(4):832-839. PubMed ID: 32233378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular cholesterol regulates monocyte deformation.
    Saha AK; Dallo SF; Detmar AL; Osmulski P; Gaczynska M; Huang TH; Ramasubramanian AK
    J Biomech; 2017 Feb; 52():83-88. PubMed ID: 28082022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a microfluidic device for cell concentration and blood cell-plasma separation.
    Maria MS; Kumar BS; Chandra TS; Sen AK
    Biomed Microdevices; 2015 Dec; 17(6):115. PubMed ID: 26564448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties.
    Lange JR; Steinwachs J; Kolb T; Lautscham LA; Harder I; Whyte G; Fabry B
    Biophys J; 2015 Jul; 109(1):26-34. PubMed ID: 26153699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformability- and size-based microcapsule sorting.
    Vesperini D; Chaput O; Munier N; Maire P; Edwards-Lévy F; Salsac AV; Le Goff A
    Med Eng Phys; 2017 Oct; 48():68-74. PubMed ID: 28728866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell docking and on-chip monitoring of cellular reactions with a controlled concentration gradient on a microfluidic device.
    Yang M; Li CW; Yang J
    Anal Chem; 2002 Aug; 74(16):3991-4001. PubMed ID: 12199565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing Deformability and Electrical Impedance of Cancer Cells in a Microfluidic Device.
    Zhou Y; Yang D; Zhou Y; Khoo BL; Han J; Ai Y
    Anal Chem; 2018 Jan; 90(1):912-919. PubMed ID: 29172457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous isolation of monocytes using a magnetophoretic-based microfluidic Chip.
    Darabi J; Guo C
    Biomed Microdevices; 2016 Oct; 18(5):77. PubMed ID: 27518600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery.
    Alhmoud H; Alkhaled M; Kaynak BE; Hanay MS
    Lab Chip; 2023 Feb; 23(4):714-726. PubMed ID: 36472226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.