These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 26941214)

  • 1. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions.
    Sharma D; Garlapat VK; Goel G
    Bioengineered; 2016 Apr; 7(2):88-97. PubMed ID: 26941214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of lignocellulolytic enzymes by Trametes gallica and detection of polysaccharide hydrolase and laccase activities in polyacrylamide gels.
    Sun X; Zhang R; Zhang Y
    J Basic Microbiol; 2004; 44(3):220-31. PubMed ID: 15162396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of high level of cellulase-poor xylanases by wild strains of white-rot fungus Coprinellus disseminatus in solid-state fermentation.
    Singh S; Tyagi CH; Dutt D; Upadhyaya JS
    N Biotechnol; 2009 Oct; 26(3-4):165-70. PubMed ID: 19761879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes.
    Elisashvili V; Kachlishvili E; Penninckx M
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1531-8. PubMed ID: 18716810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo enzymatic digestion, in vitro xylanase digestion, metabolic analogues, surfactants and polyethylene glycol ameliorate laccase production from Ganoderma sp. kk-02.
    Sharma KK; Kapoor M; Kuhad RC
    Lett Appl Microbiol; 2005; 41(1):24-31. PubMed ID: 15960748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grape stalks as substrate for white rot fungi, lignocellulolytic enzyme production and dye decolorization.
    Levin L; Diorio L; Grassi E; Forchiassin F
    Rev Argent Microbiol; 2012; 44(2):105-12. PubMed ID: 22997770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of conditions for the production of lignocellulolytic enzymes by
    Neelkant KS; Shankar K; Jayalakshmi SK; Sreeramulu K
    Prep Biochem Biotechnol; 2019; 49(9):927-934. PubMed ID: 31318309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidation of the Higher Basidiomycetes Enzyme Activity in Dependence on the Medicinal Mushroom Inoculum Form, Precultivation Medium, Age, and Size.
    Kachlishvili E; Kobakhidze A; Rusitashvili M; Tsokilauri A; Elisashvili VI
    Int J Med Mushrooms; 2020; 22(11):1099-1108. PubMed ID: 33426841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens.
    Sun X; Liu Z; Qu Y; Li X
    Appl Biochem Biotechnol; 2008 Mar; 146(1-3):119-28. PubMed ID: 18421592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the remaining activity of lignocellulolytic enzymes by membrane entrapment.
    Chang KL; Thitikorn-amorn J; Chen SH; Hsieh JF; Ratanakhanokchai K; Huang PJ; Lin TC; Chen ST
    Bioresour Technol; 2011 Jan; 102(2):519-23. PubMed ID: 20952190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly thermo-halo-alkali-stable β-1,4-endoxylanase from a novel polyextremophilic strain of Bacillus halodurans.
    Kumar V; Syal P; Satyanarayana T
    Bioprocess Biosyst Eng; 2013 May; 36(5):555-65. PubMed ID: 22932960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid state fermentation and crude cellulase based bioconversion of potential bamboo biomass to reducing sugar for bioenergy production.
    Pandey RK; Chand K; Tewari L
    J Sci Food Agric; 2018 Sep; 98(12):4411-4419. PubMed ID: 29435990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature.
    Farinas CS; Loyo MM; Baraldo A; Tardioli PW; Neto VB; Couri S
    N Biotechnol; 2010 Dec; 27(6):810-5. PubMed ID: 20937420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive studies on optimization of cellulase and xylanase production by a local indigenous fungus strain via solid state fermentation using oil palm frond as substrate.
    Tai WY; Tan JS; Lim V; Lee CK
    Biotechnol Prog; 2019 May; 35(3):e2781. PubMed ID: 30701709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and enzymatic response of the thermotolerant fungus Fomes sp. EUM1 in solid state fermentation under thermal stress.
    Ordaz-Hernández A; Ortega-Sánchez E; Montesinos-Matías R; Hernández-Martínez R; Torres-Martínez D; Loera O
    FEMS Microbiol Lett; 2016 Aug; 363(16):. PubMed ID: 27445319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of toxaphene by Bjerkandera sp. strain BOL13 using waste biomass as a cosubstrate.
    Lacayo Romero M; Terrazas E; van Bavel B; Mattiasson B
    Appl Microbiol Biotechnol; 2006 Jul; 71(4):549-54. PubMed ID: 16283301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation.
    Nagar S; Gupta VK; Kumar D; Kumar L; Kuhad RC
    J Ind Microbiol Biotechnol; 2010 Jan; 37(1):71-83. PubMed ID: 19859753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical characterization of pectinase activity from Bacillus spp. and their accessory role in synergism with crude xylanase and commercial cellulase in enzyme cocktail mediated saccharification of agrowaste biomass.
    Thite VS; Nerurkar AS
    J Appl Microbiol; 2018 May; 124(5):1147-1163. PubMed ID: 29411930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laccase and manganese peroxidase activities of Phellinus robustus and Ganoderma adspersum grown on food industry wastes in submerged fermentation.
    Songulashvili G; Elisashvili V; Wasser S; Nevo E; Hadar Y
    Biotechnol Lett; 2006 Sep; 28(18):1425-9. PubMed ID: 16823599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of a xylose-stimulated β-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation.
    Masui DC; Zimbardi AL; Souza FH; Guimarães LH; Furriel RP; Jorge JA
    World J Microbiol Biotechnol; 2012 Aug; 28(8):2689-701. PubMed ID: 22806195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.