BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26941565)

  • 1. Preparation and Reinforcement of Dual-Porous Biocompatible Cellulose Scaffolds for Tissue Engineering.
    Pircher N; Fischhuber D; Carbajal L; Strauß C; Nedelec JM; Kasper C; Rosenau T; Liebner F
    Macromol Mater Eng; 2015 Sep; 300(9):911-924. PubMed ID: 26941565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement of bacterial cellulose aerogels with biocompatible polymers.
    Pircher N; Veigel S; Aigner N; Nedelec JM; Rosenau T; Liebner F
    Carbohydr Polym; 2014 Oct; 111(100):505-13. PubMed ID: 25037381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerogels from Cellulose Phosphates of Low Degree of Substitution: A TBAF·H
    Schimper CB; Pachschwoell PS; Hettegger H; Neouze MA; Nedelec JM; Wendland M; Rosenau T; Liebner F
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32272769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application.
    Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T
    Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing dual nano/macroporous starch bioaerogels via emulsion templating and supercritical carbon dioxide drying.
    Alavi F; Ciftci ON
    Carbohydr Polym; 2022 Sep; 292():119607. PubMed ID: 35725150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens.
    Johnson T; Bahrampourian R; Patel A; Mequanint K
    Biomed Mater Eng; 2010; 20(2):107-18. PubMed ID: 20592448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent.
    Mi HY; Jing X; Salick MR; Cordie TM; Turng LS
    J Mech Behav Biomed Mater; 2016 Sep; 62():417-427. PubMed ID: 27266475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sterile and Dual-Porous Aerogels Scaffolds Obtained through a Multistep Supercritical CO₂-Based Approach.
    Santos-Rosales V; Ardao I; Alvarez-Lorenzo C; Ribeiro N; Oliveira AL; García-González CA
    Molecules; 2019 Mar; 24(5):. PubMed ID: 30823685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly flexible magnetic composite aerogels prepared by using cellulose nanofibril networks as templates.
    Liu S; Yan Q; Tao D; Yu T; Liu X
    Carbohydr Polym; 2012 Jun; 89(2):551-7. PubMed ID: 24750757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-porous cellulose nanofibril aerogels via modular drying and cross-linking.
    Wu T; Zeng Z; Siqueira G; De France K; Sivaraman D; Schreiner C; Figi R; Zhang Q; Nyström G
    Nanoscale; 2020 Apr; 12(13):7383-7394. PubMed ID: 32207510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Biopolymer Aerogels Using Green Solvents.
    Subrahmanyam R; Gurikov P; Meissner I; Smirnova I
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27403649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates.
    Korhonen JT; Hiekkataipale P; Malm J; Karppinen M; Ikkala O; Ras RH
    ACS Nano; 2011 Mar; 5(3):1967-74. PubMed ID: 21361349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of cellulose aerogels and cryogels.
    Buchtová N; Pradille C; Bouvard JL; Budtova T
    Soft Matter; 2019 Oct; 15(39):7901-7908. PubMed ID: 31535679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of selected solvent systems on the pore and solid structure of cellulose aerogels.
    Pircher N; Carbajal L; Schimper C; Bacher M; Rennhofer H; Nedelec JM; Lichtenegger HC; Rosenau T; Liebner F
    Cellulose (Lond); 2016; 23():1949-1966. PubMed ID: 27340346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering.
    Shi X; Sitharaman B; Pham QP; Liang F; Wu K; Edward Billups W; Wilson LJ; Mikos AG
    Biomaterials; 2007 Oct; 28(28):4078-90. PubMed ID: 17576009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels.
    Liebner F; Haimer E; Wendland M; Neouze MA; Schlufter K; Miethe P; Heinze T; Potthast A; Rosenau T
    Macromol Biosci; 2010 Apr; 10(4):349-52. PubMed ID: 20166232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological effects of porous poly-d,l-lactic acid/hydroxyapatite scaffolds produced by supercritical CO2 foaming on their mechanical performance.
    Rouholamin D; van Grunsven W; Reilly GC; Smith PJ
    Proc Inst Mech Eng H; 2016 Aug; 230(8):761-74. PubMed ID: 27226064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silk fibroin aerogels: potential scaffolds for tissue engineering applications.
    Mallepally RR; Marin MA; Surampudi V; Subia B; Rao RR; Kundu SC; McHugh MA
    Biomed Mater; 2015 May; 10(3):035002. PubMed ID: 25953953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-state cryomilling for porogen mixing and porous scaffold fabrication - biomed 2011.
    Allaf RM; Rivero IV
    Biomed Sci Instrum; 2011; 47():258-63. PubMed ID: 21525630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-linked cellulose nanocrystal aerogels as viable bone tissue scaffolds.
    Osorio DA; Lee BEJ; Kwiecien JM; Wang X; Shahid I; Hurley AL; Cranston ED; Grandfield K
    Acta Biomater; 2019 Mar; 87():152-165. PubMed ID: 30710708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.