These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 26941647)

  • 1. Sequential Filtering Processes Shape Feature Detection in Crickets: A Framework for Song Pattern Recognition.
    Hedwig BG
    Front Physiol; 2016; 7():46. PubMed ID: 26941647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sound processing in the cricket brain: evidence for a pulse duration filter.
    Zhang X; Hedwig B
    J Neurophysiol; 2023 Oct; 130(4):953-966. PubMed ID: 37701942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An auditory feature detection circuit for sound pattern recognition.
    Schöneich S; Kostarakos K; Hedwig B
    Sci Adv; 2015 Sep; 1(8):e1500325. PubMed ID: 26601259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Song pattern recognition in crickets based on a delay-line and coincidence-detector mechanism.
    Hedwig B; Sarmiento-Ponce EJ
    Proc Biol Sci; 2017 May; 284(1855):. PubMed ID: 28539524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonotaxis in flying crickets. I. Attraction to the calling song and avoidance of bat-like ultrasound are discrete behaviors.
    Nolen TG; Hoy RR
    J Comp Physiol A; 1986 Oct; 159(4):423-39. PubMed ID: 3783496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behavior.
    Kostarakos K; Hedwig B
    J Neurosci; 2012 Jul; 32(28):9601-12. PubMed ID: 22787046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern recognition in field crickets: concepts and neural evidence.
    Kostarakos K; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jan; 201(1):73-85. PubMed ID: 25348550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Response properties of spiking and non-spiking brain neurons mirror pulse interval selectivity.
    Zhang X; Hedwig B
    Front Cell Neurosci; 2022; 16():1010740. PubMed ID: 36246524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect.
    Kostarakos K; Römer H
    J Neurosci; 2015 Jul; 35(29):10562-71. PubMed ID: 26203150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABAergic Local Interneurons Shape Female Fruit Fly Response to Mating Songs.
    Yamada D; Ishimoto H; Li X; Kohashi T; Ishikawa Y; Kamikouchi A
    J Neurosci; 2018 May; 38(18):4329-4347. PubMed ID: 29691331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state.
    Hedwig B
    J Neurophysiol; 2000 Feb; 83(2):712-22. PubMed ID: 10669487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical song features for auditory pattern recognition in crickets.
    Meckenhäuser G; Hennig RM; Nawrot MP
    PLoS One; 2013; 8(2):e55349. PubMed ID: 23437054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steering responses of flying crickets to sound and ultrasound: Mate attraction and predator avoidance.
    Moiseff A; Pollack GS; Hoy RR
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):4052-6. PubMed ID: 16592556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroethology of acoustic communication in field crickets - from signal generation to song recognition in an insect brain.
    Schöneich S
    Prog Neurobiol; 2020 Nov; 194():101882. PubMed ID: 32673695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time and timing in the acoustic recognition system of crickets.
    Hennig RM; Heller KG; Clemens J
    Front Physiol; 2014; 5():286. PubMed ID: 25161622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Steppengrille (Gryllus spec./assimilis): selective filters and signal mismatch on two time scales.
    Rothbart MM; Hennig RM
    PLoS One; 2012; 7(9):e43975. PubMed ID: 22970154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic signalling for mate attraction in crickets: Abdominal ganglia control the timing of the calling song pattern.
    Jacob PF; Hedwig B
    Behav Brain Res; 2016 Aug; 309():51-66. PubMed ID: 27109338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): possible roles in regulating phonotactic threshold and selectiveness for call carrier frequency.
    Bronsert M; Bingol H; Atkins G; Stout J
    J Exp Zool A Comp Exp Biol; 2003 Mar; 296(1):72-85. PubMed ID: 12589693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic communication in Okanagana rimosa (Say) (Homoptera: Cicadidae).
    Stölting H; Moore TE; Lakes-Harlan R
    Zoology (Jena); 2004; 107(3):243-57. PubMed ID: 16351942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulses, patterns and paths: neurobiology of acoustic behaviour in crickets.
    Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jul; 192(7):677-89. PubMed ID: 16523340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.