BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 26942177)

  • 1. The Clusters-in-a-Liquid Approach for Solvation: New Insights from the Conformer Specific Gas Phase Spectroscopy and Vibrational Optical Activity Spectroscopy.
    Perera AS; Thomas J; Poopari MR; Xu Y
    Front Chem; 2016; 4():9. PubMed ID: 26942177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IR, Raman, and Vibrational Optical Activity Spectra of Methyl Glycidate in Chloroform and Water: The Clusters-in-a-liquid Solvation Model.
    Perera AS; Cheramy J; Merten C; Thomas J; Xu Y
    Chemphyschem; 2018 Sep; 19(17):2234-2242. PubMed ID: 29768716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative VCD study of methyl mandelate in methanol, dimethyl sulfoxide, and chloroform: explicit and implicit solvation models.
    Poopari MR; Dezhahang Z; Xu Y
    Phys Chem Chem Phys; 2013 Feb; 15(5):1655-65. PubMed ID: 23247722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational absorption and vibrational circular dichroism spectra of leucine in water under different pH conditions: hydrogen-bonding interactions with water.
    Poopari MR; Zhu P; Dezhahang Z; Xu Y
    J Chem Phys; 2012 Nov; 137(19):194308. PubMed ID: 23181307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactic acid in solution: investigations of lactic acid self-aggregation and hydrogen bonding interactions with water and methanol using vibrational absorption and vibrational circular dichroism spectroscopies.
    Losada M; Tran H; Xu Y
    J Chem Phys; 2008 Jan; 128(1):014508. PubMed ID: 18190205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvation of propylene oxide in water: vibrational circular dichroism, optical rotation, and computer simulation studies.
    Losada M; Nguyen P; Xu Y
    J Phys Chem A; 2008 Jun; 112(25):5621-7. PubMed ID: 18522383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How many solvent molecules are required to solvate chiral 1,2-diols with hydrogen bonding solvents? A VCD spectroscopic study.
    Weirich L; Magalhães de Oliveira J; Merten C
    Phys Chem Chem Phys; 2020 Jan; 22(3):1525-1533. PubMed ID: 31872847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chirality transfer through hydrogen-bonding: experimental and ab initio analyses of vibrational circular dichroism spectra of methyl lactate in water.
    Losada M; Xu Y
    Phys Chem Chem Phys; 2007 Jun; 9(24):3127-35. PubMed ID: 17612736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational circular dichroism spectroscopy of chiral molecules.
    Yang G; Xu Y
    Top Curr Chem; 2011; 298():189-236. PubMed ID: 21321803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvation and self-aggregation of chiral alcohols: how hydrogen bonding affects their VCD spectral signatures.
    Weirich L; Merten C
    Phys Chem Chem Phys; 2019 Jun; 21(25):13494-13503. PubMed ID: 31204735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvation of a chiral carboxylic acid: effects of hydrogen bonding on the IR and VCD spectra of α-methoxyphenylacetic acid.
    Bünnemann K; Merten C
    Phys Chem Chem Phys; 2017 Jul; 19(29):18948-18956. PubMed ID: 28650488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing chiral solute-water hydrogen bonding networks by chirality transfer effects: a vibrational circular dichroism study of glycidol in water.
    Yang G; Xu Y
    J Chem Phys; 2009 Apr; 130(16):164506. PubMed ID: 19405593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infrared optical activity: electric field approaches in time domain.
    Rhee H; Choi JH; Cho M
    Acc Chem Res; 2010 Dec; 43(12):1527-36. PubMed ID: 20931956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying dominant conformations of N-acetyl-L-cysteine methyl ester and N-acetyl-L-cysteine in water: VCD signatures of the amide I and the C=O stretching bands.
    Poopari MR; Dezhahang Z; Xu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt A():131-40. PubMed ID: 24076069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational distributions of N-acetyl-L-cysteine in aqueous solutions: a combined implicit and explicit solvation treatment of VA and VCD spectra.
    Poopari MR; Dezhahang Z; Yang G; Xu Y
    Chemphyschem; 2012 Jun; 13(9):2310-21. PubMed ID: 22544382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational circular dichroism spectroscopy of two chiral binaphthyl diphosphine ligands and their palladium complexes in solution.
    Dezhahang Z; Merten C; Poopari MR; Xu Y
    Dalton Trans; 2012 Sep; 41(35):10817-24. PubMed ID: 22854974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformations of serine in aqueous solutions as revealed by vibrational circular dichroism.
    Zhu P; Yang G; Poopari MR; Bie Z; Xu Y
    Chemphyschem; 2012 Apr; 13(5):1272-81. PubMed ID: 22334359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The important role of non-covalent interactions for the vibrational circular dichroism of lactic acid in aqueous solution.
    Jähnigen S; Sebastiani D; Vuilleumier R
    Phys Chem Chem Phys; 2021 Aug; 23(32):17232-17241. PubMed ID: 34369531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of microsolvation on vibrational circular dichroism spectra in dimethyl sulfoxide solvent: A Bottom-Up approach using Quantum cluster growth.
    Puente AR; Polavarapu PL
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123231. PubMed ID: 37562213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation of lactic acid in cold rare-gas matrices and the link to solution: a matrix isolation-vibrational circular dichroism study.
    Perera AS; Cheramy J; Poopari MR; Xu Y
    Phys Chem Chem Phys; 2019 Feb; 21(7):3574-3584. PubMed ID: 30246190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.