These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26942214)

  • 41. One-Dimensional Structural Properties of Proteins in the Coarse-Grained CABS Model.
    Kmiecik S; Kolinski A
    Methods Mol Biol; 2017; 1484():83-113. PubMed ID: 27787822
    [TBL] [Abstract][Full Text] [Related]  

  • 42. FebRNA: An automated fragment-ensemble-based model for building RNA 3D structures.
    Zhou L; Wang X; Yu S; Tan YL; Tan ZJ
    Biophys J; 2022 Sep; 121(18):3381-3392. PubMed ID: 35978551
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS.
    Piatkowski P; Kasprzak JM; Kumar D; Magnus M; Chojnowski G; Bujnicki JM
    Methods Mol Biol; 2016; 1490():217-35. PubMed ID: 27665602
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RNA 3D structure prediction guided by independent folding of homologous sequences.
    Magnus M; Kappel K; Das R; Bujnicki JM
    BMC Bioinformatics; 2019 Oct; 20(1):512. PubMed ID: 31640563
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coarse-grained simulations of RNA and DNA duplexes.
    Cragnolini T; Derreumaux P; Pasquali S
    J Phys Chem B; 2013 Jul; 117(27):8047-60. PubMed ID: 23730911
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methods for the Refinement of Protein Structure 3D Models.
    Adiyaman R; McGuffin LJ
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31075942
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational prediction of riboswitch tertiary structures including pseudoknots by RAGTOP: a hierarchical graph sampling approach.
    Kim N; Zahran M; Schlick T
    Methods Enzymol; 2015; 553():115-35. PubMed ID: 25726463
    [TBL] [Abstract][Full Text] [Related]  

  • 48. F-RAG: Generating Atomic Coordinates from RNA Graphs by Fragment Assembly.
    Jain S; Schlick T
    J Mol Biol; 2017 Nov; 429(23):3587-3605. PubMed ID: 28988954
    [TBL] [Abstract][Full Text] [Related]  

  • 49. VfoldCPX Server: Predicting RNA-RNA Complex Structure and Stability.
    Xu X; Chen SJ
    PLoS One; 2016; 11(9):e0163454. PubMed ID: 27657918
    [TBL] [Abstract][Full Text] [Related]  

  • 50. New in silico approach to assessing RNA secondary structures with non-canonical base pairs.
    Rybarczyk A; Szostak N; Antczak M; Zok T; Popenda M; Adamiak R; Blazewicz J; Szachniuk M
    BMC Bioinformatics; 2015 Sep; 16(1):276. PubMed ID: 26329823
    [TBL] [Abstract][Full Text] [Related]  

  • 51. IsRNA: An Iterative Simulated Reference State Approach to Modeling Correlated Interactions in RNA Folding.
    Zhang D; Chen SJ
    J Chem Theory Comput; 2018 Apr; 14(4):2230-2239. PubMed ID: 29499114
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [An RNA Scoring Function for Tertiary Structure Prediction Based on Multi-layer Neural Networks].
    Wang YZ; Li J; Zhang S; Huang B; Yao G; Zhang J
    Mol Biol (Mosk); 2019; 53(1):132-141. PubMed ID: 30895961
    [TBL] [Abstract][Full Text] [Related]  

  • 53. All-atom knowledge-based potential for RNA structure prediction and assessment.
    Capriotti E; Norambuena T; Marti-Renom MA; Melo F
    Bioinformatics; 2011 Apr; 27(8):1086-93. PubMed ID: 21349865
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational reconstruction of atomistic protein structures from coarse-grained models.
    Badaczewska-Dawid AE; Kolinski A; Kmiecik S
    Comput Struct Biotechnol J; 2020; 18():162-176. PubMed ID: 31969975
    [TBL] [Abstract][Full Text] [Related]  

  • 55. All-atom four-body knowledge-based statistical potential to distinguish native tertiary RNA structures from nonnative folds.
    Masso M
    J Theor Biol; 2018 Sep; 453():58-67. PubMed ID: 29782930
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improvements of the hierarchical approach for predicting RNA tertiary structure.
    Zhao Y; Gong Z; Xiao Y
    J Biomol Struct Dyn; 2011 Apr; 28(5):815-26. PubMed ID: 21294592
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A nucleobase-centered coarse-grained representation for structure prediction of RNA motifs.
    Poblete S; Bottaro S; Bussi G
    Nucleic Acids Res; 2018 Feb; 46(4):1674-1683. PubMed ID: 29272539
    [TBL] [Abstract][Full Text] [Related]  

  • 58. UNRES server for physics-based coarse-grained simulations and prediction of protein structure, dynamics and thermodynamics.
    Czaplewski C; Karczynska A; Sieradzan AK; Liwo A
    Nucleic Acids Res; 2018 Jul; 46(W1):W304-W309. PubMed ID: 29718313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A statistical sampling algorithm for RNA secondary structure prediction.
    Ding Y; Lawrence CE
    Nucleic Acids Res; 2003 Dec; 31(24):7280-301. PubMed ID: 14654704
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D structure stability of the HIV-1 TAR RNA in ion solutions: A coarse-grained model study.
    Zhang BG; Qiu HH; Jiang J; Liu J; Shi YZ
    J Chem Phys; 2019 Oct; 151(16):165101. PubMed ID: 31675878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.